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Abstract. As HPC systems and applications get bigger and more complex, we
are approaching an era in which resiliency and run-time elasticity concerns be-
come paramount. We offer a building block for an alternative resiliency approach
in which computations will be able to make progress while components fail, in
addition to enabling a dynamic set of nodes throughout a computation lifetime.
The core of our solution is a hierarchical scalable membership service provid-
ing eventual consistency semantics. An attribute replication service is used for
hierarchy organization, and is exposed to external applications. Our solution is
based on P2P technologies and provides resiliency and elastic runtime support at
ultra large scales. Resulting middleware is general purpose while exploiting HPC
platform unique features and architecture. We have implemented and tested this
system on BlueGene/P with Linux, and using worst-case analysis, evaluated the
service scalability as effective for up to 1M nodes.

1 Introduction
Current trends dictate increasing complexity and component counts on supercomputers
and mainstream commercial systems alike [1]. This trend exposes weaknesses in the
underlying clustering infrastructure needed for continuous availability, maximizing uti-
lization, and efficient administration of such systems [2]. These issues can properly be
tackled by having a resiliency supportive run-time for ensuring continuous availability
and elastic run-time support for utilization maximization through proper jobs placement
and load balancing. System elasticity can be an important factor also for the conserva-
tion of power which is a growing concern in the HPC world. The issue of resiliency has
been identified as one of the big future challenges in the HPC world [3].

Current HPC execution environments do not provide the hosted parallel applications
with a fault-free guarantee. Rather, developers need to specifically take appropriate ac-
tions in the presence of such faults (for example by using checkpoint-restart). Moreover,
the most popular programming paradigm for HPC, MPI, assumes all interruptions, in-
cluding single core failures, are fatal to the entire parallel application [4]. It has been
identified that as systems grow, failure rates will reach a level that will render current
resiliency models ineffective [5].
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gramme FP7/2007-2013 under grant agreement number 317862 (COMPOSE).



We propose a step to alleviate these problems by providing a highly scalable clus-
tering infrastructure for supporting a resiliency-aware elastic runtime and the hosted
applications (see Fig. 1-A). The most important service a clustering infrastructure must
provide is a membership service, which delivers to every node, or a select subset of the
nodes, a view of the all the nodes that belong to the cluster. The membership service
must detect failures of members, and support leave, join, and discovery functions. Al-
though membership services were widely investigated, the characteristics of HPC pose
unique requirements:
Ultra Large Scale: To deal with 1M nodes, we apply two principles: (1) use of a relaxed
consistency model, namely eventual consistency, and (2) a hierarchical architecture.
Coupling: HPC workloads are mostly tightly coupled. That is, a single failure may
cause a huge amount of other nodes to wait for recovery. Such parallel computations
require fast failure detection in order for the failed computation to migrate to a new
location with minimal disruption to the entire computation. To accommodate that we
expedite failure notification to certain privileged “high priority monitors”.
Churn: Current HPC workloads are characterized by static, a-priori defined groups.
Even programming models that theoretically permit dynamic membership [6], are cur-
rently implemented in a way that assumes static a-priori membership. Dynamic mem-
bership is primarily needed to deal with faults, yet opens up the possibility to dynami-
cally shrink and expand a computation. The expected churn rate in HPC is lower than
in Internet or data-center settings. However, the dense integration of modern machines
increases the likelihood of correlated failures, where a failure of one component (e.g.
IO-node) causes cascading failures (e.g. of compute nodes). This requires a membership
service that tolerates concurrent failures without significant loss of performance.
Failure model: Recent advancements in HPC resiliency support include CIFTS and
MPI3 [7], which are based on a failure model assuming fail-stop failures, no network
partitions, and a perfect failure detector. Our system takes it a step further by removing
these restrictions on the failure model.

In order to support resilient and elastic HPC runtime and applications we expose
several services: (1) a membership service, (2) an attribute replication service, and (3)
group communication services [8]. The runtime will be able to take advantage of this
suite of services in order to achieve, among other aspects, adequate tasks placement,
scheduling, load balancing, migration, and performance monitoring.

In this paper we concentrate on the membership and the attribute replication ser-
vices, which form the foundation on which other group communication services are
built. The contribution of this paper is centered around the design, implementation, and
evaluation of these services. The system was evaluated to reach a higher scale than
known methods (see Sec. 6), while achieving good results both for massive start-up as
well as for failure detection, while assuming a general non restrictive failure model.
Using worst case analysis, a full implementation of these services was evaluated as ef-
fective for up to a million nodes. Both the architecture and the membership and attribute
replication services present innovations that facilitate this achievement.

In the remainder of the paper, Sec. 2 provides an overview of the system architec-
ture, while Sec. 3 & 4 dive deeper into the major components of the system. Section 5
details a thorough evaluation of the system, related work is in Sec. 6, and concluding
remarks are presented in Sec. 7.
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Fig. 1. (A) The software stack of a fault tolerant, elastic parallel runtime. (B) A fault tolerant
hierarchy with redundant connectivity, and the data structure distribution along the two levels.

2 System Architecture
The requirements and characteristics of HPC systems, detailed in the previous section,
led us to a hierarchical peer-to-peer design (see Fig. 1-B). The basic building block
of the system is that of a zone. Within a zone, full membership is maintained with an
eventual consistency semantic (detailed in Sec. 3). In addition, an attribute replication
service allows each node to write a key-value table, which is then replicated to all other
nodes. This allows each node to communicate its state to every other node in the zone.
This design scales to zones consisting of approximately a few thousand members. In
order to achieve the 1M nodes target, the membership and attribute replication services
are used as building blocks of a two layers hierarchy, composed of base-zones federated
by a management-zone (see Fig. 1-B). On Blue Gene/P [9] for example, zone affilia-
tion be can derived from the “personality” of each node, organizing the compute nodes
of a rack into a base-zone, selecting IO-nodes for the management zone, and assign-
ing co-located IO-nodes to the respective base-zones. Each base zone elects, using the
attribute service, delegates to connect to the management zone’s appropriate supervi-
sor. An active delegate sends the supervisor updates about the base-zone membership.
A supervisor shares information with its peers, using the attribute replication service,
publishing the names of guarded base-zones, the number of active delegates per such
zone, and the view size of each base-zone (see Fig. 1-B). This enables each member
of the management zone to have a “system census”, which is an up-to-date eventually
consistent summary view of the entire cluster. In addition, if further details are needed,
there are mechanisms in place which enable every management node to obtain more
specific information regarding each base zone, such as the detailed full membership of
that zone. Since components, including delegates, supervisors, and the links between
them can fail, the hierarchy contains redundancy in each of these elements. Whenever
a component fails, it is immediately and automatically replaced, so that the integrity of
the hierarchy is maintained at all times.

In order to ensure fast failure detection, the active delegate in each zone serves as the
zone’s “high priority monitor” (HPM). Failure detection information is sent to the HPM
node directly, although possibly using unreliable communication, in addition to the
reliable yet relatively slow gossip-based dissemination mechanism. These notifications
traverse the hierarchical structure as well. Thus, a single monitor or a hierarchy thereof
can take fast actions such as re-spawning the failed computation.



3 Zone Membership
In this section we describe in detail the membership protocol implemented in both
base and management zones. Each node n is associated with an ID, which carries
the node name and network endpoints. Each ID is accompanied by a version Ver =
⟨inc,minor⟩, where: (1) inc identifies different incarnations of the same node, sepa-
rated by crash failures or restarts, and is strictly increasing; and (2) minor starts from
1 on every incarnation and is incremented by n according to the protocol described
below. The local membership View is a map ID → Ver, where Viewn[m] is the most
current Ver of node m known to n. Changes to the view are delivered differentially:
NOTIFY-JOIN(⟨p, v⟩) is invoked when node p with version v joins the overlay or after a
network partition heals; NOTIFY-LEAVE(⟨p, v⟩) is invoked when ⟨p, v⟩ leaves, fails, or
is behind a network partition. The semantic is that of eventual consistency: ∀m,n that
remain in the same group, Viewn = Viewm, some finite time after no more nodes join
or leave, and the network is stable.

Bootstrap & History: When a node starts, it is given a set B of IDs to bootstrap
from. The history map H contains the IDs of nodes which were recently removed from
the View, along with their removal time and version when removed. If a node re-enters
the view, it is removed from H (i.e. H ∩ View = ∅). The history map is used to identify
stale messages, that arrive after a node fails. In case the history map H grows beyond a
certain limit, it is pruned by removing nodes older than some threshold.

Discovery: The discovery task selects target m ∈ {B \ View ∪ H} randomly, and
sends a discovery-request message that contains its own ID and Ver, as well as a boot
flag that encodes whether the target m was selected from B or from H. The discovery-
reply consists of the full view of the target m, and the flag boot. For both request and
reply, in case ¬boot, the receiver p performs Verp.min ← Verp.min + 1, and then
processes each pair of ⟨ID,Ver⟩ from the message using PROCESSALIVE(⟨ID,Ver⟩)
(see Alg. 1). This process both heals partitions and discovers new peers. The discovery
targets are not kept as permanent neighbors. The discovery task is performed frequently
at bootstrap, and as time passes its frequency decreases.

Topology: As the view begins to fill up, the topology component starts choosing
and connecting to long-term neighbors. The topology built from the view has two in-
gredients: (1) a robust ring where each node is connected to Ks successors (ring order
based on SHA1 of ID), and (2) Kr random neighbors. The ring ensures that eventually
all failed nodes will be discovered by their predecessor(s). This ensures eventual com-
pleteness of the view [10]. The random nodes are selected according to a protocol which
approximates a Kr-connected random graph [11], yielding a robust and well connected
overlay.

Failure Detection and Orderly Leaves: Failure detection is based on neighbors
monitoring each other using heartbeats. Node r creates a failure suspicion report on
node s if (1) an established connection between r and s fails, or (2) a heartbeat timeout
is reported on s, or (3) s is member of r’s successor list, and a connect attempt from
r to s fails. The last condition ensures the view’s eventual completeness [10]. A sus-
picion report consists of the tuple ⟨r, s, v⟩ for the reporter’s ID, the suspect’s ID, and
suspect’s Ver. The reporter calls PROCESSSUSPICION(r, s,Viewr[s]) in order to spread
the report further (see Alg. 1). Adjacent to Viewn[m] is the suspicion repository 2D map
Sn[s][r]→ v, which stores every unique suspicion report received. Note that suspicion



Algorithm 1 Processing of Alive, Leave, and Suspicion events, at node n.
1: procedure PROCESSALIVE(ID p,Ver v)
2: if (p /∈ Viewn) ∧ ((p /∈ Hn) ∨ (p ∈ Hn ∧ v > Hn[p].Ver)) then ◃ join
3: Viewn[p]← v; remove p from Hn; add ⟨p, v⟩ to ∆.A; NOTIFY-JOIN(⟨p, v⟩);
4: if (p ∈ Viewn) ∧ (v > Viewn[p]) then ◃ newer version
5: add ⟨p, v⟩ to ∆.A;
6: for all r ∈ Sn[p], Sn[p][r] < v do ◃ prune refuted suspicions remove r from Sn[p];
7: if Viewn[p].inc = v.inc then Viewn[p]← v;
8: else ◃ new incarnation
9: NOTIFY-LEAVE(⟨p,Viewn[p]⟩); Viewn[p]← v; NOTIFY-JOIN(⟨p, v⟩);

10: procedure PROCESSLEAVE(ID p,Ver v)
11: if (p ∈ Viewn) ∧ (v ≥ Viewn[p]) then ◃ in-view leave
12: remove p from Viewn and Sn; Hn[p]← ⟨v, time⟩; add ⟨p, v⟩ to ∆.L;
13: NOTIFYLEAVE(⟨p, v⟩);
14: if (p /∈ Viewn) ∧ (p ∈ Hn) ∧ (v > Hn[p].Ver) then ◃ out-of-view leave
15: Hn[p]← ⟨v, time⟩; add ⟨p, v⟩ to ∆.L;
16: procedure PROCESSSUSPICION(ID r,ID s,Ver v)
17: if s = n then ◃ refute suspicion on self
18: Vern.min← Vern.min+ 1; add ⟨n,Vern⟩ to ∆.A;
19: else if s ∈ Viewn ∧ v ≥ Viewn[s] then
20: if r /∈ Sn[s] ∨ Sn[s][r] < v then ◃ valid, new suspicion
21: Sn[s][r]← v; add ⟨r, s, v⟩ to ∆.S;
22: if |Sn[s]| ≥ Θ then ◃ enough evidence! correction for small views omitted
23: remove s from Viewn and Sn; H[s]← ⟨v, time⟩; NOTIFYLEAVE(⟨s, v⟩);

reports with a version lower than the version of the suspect in the view are discarded.
In order to decrease the false detection rate, a node is declared as “failed” only after the
number of reporters suspecting the same node exceeds a threshold, Θ. To ensure even-
tual completeness, Ks ≥ Θ must hold. When a node orderly leaves the overlay, it sends
all its neighbors a leave message, which contains the node ID and Ver (and possibly an
exit code). Upon reception leave messages are processed by PROCESSLEAVE(ID,Ver)
and added to the update database for further dissemination.

Membership Updates: Node membership information is disseminated over the
Kr + Ks long-term overlay links. When node n acquires a new neighbor m, it will
send m a membership message that contains: (1) the entire Viewn, and (2) all the cur-
rent suspicions (all the tuples ⟨r, s, Sn[s][r]⟩). After the first “base-view message” a
neighbor is sent only “update” messages, which differentially capture the difference
from the base-view. The update-database ∆ contains the following three sets: (1) A –
The ⟨ID,Ver⟩ of nodes on which fresh Alive information was received (may include the
current node); (2) S – received suspicion reports ⟨r,s,v⟩ ; (3) L – The ⟨ID,Ver⟩ of re-
ceived Leave messages. The update database starts empty and accumulates alive, leave,
and suspicion events (see Alg. 1). A membership update message is sent to all neighbors
after a configurable aggregation interval (τ ) from the first such event that hits an empty
∆. After ∆ is sent to all the neighbors, it is cleared. Upon receiving a membership
message (base or update), every ⟨p, v⟩ ∈ L, every ⟨p, v⟩ ∈ A, and every ⟨r, s, v⟩ ∈ S



is processed by Alg. 1 #10,#1,#16, respectively. This order minimizes the chance of
notifying a false suspicion.

High Priority Monitoring: In the protocol described above, membership updates
are expected to propagate to all nodes in time proportional to τ and the overlay diameter,
which is O(logKr

N) [11]. In many applications there is only a single or a small number
of monitors that take decisions based on membership events. It is possible to decrease
the monitor’s failure detection time by sending the original suspicion reports directly
to the monitor (e.g. using UDP), in addition to the reliable propagation mechanism
described in Alg. 1. We allow a small number of selected nodes to declare themselves
(automatically or programmatically) as monitors using the attribute replication service.
This lets every node in the zone know who the monitors are. When node n suspects
the failure of a neighbor m with version v, it will immediately send the monitors a
membership message containing suspicion ⟨n,m, v⟩. This message is processed just
like any other suspicion (see Alg. 1). A monitor will receive up to Kr + Ks such
messages on every failure.

4 Attribute Replication Service
Each node n has an attribute map An of key-value pairs it can write to. Each key-value
pair ⟨k,t⟩ is associated with a version number u ∈ N, such that newer values of the
same key carry larger version number. The goal is to replicate the attribute map An of
node n to all other nodes. Let us denote by Mn(m) the map replica of node m, that
node n holds. Thus, node n holds one map it can write to directly Mn(n) ≡ An, and
read-only replicas of the maps of every other node Mn(m), ∀m ̸= n. Thus, the ul-
timate goal is to reach Mn = Mm,∀n,m (some finite time after the end of writes).
When node n learns about the attribute changes of node p, it notifies the user by invok-
ing NOTIFY-ATTCHANGE(Mn(p)). The attribute dissemination protocol is inspired by
Anti-Entropy (AE) protocols [12, 13], where in every round a node reconciles its state
with a randomly selected gossip peer. The disadvantage is that on every AE round, the
entire membership of node n (O(|Viewn|)) has to be transmitted. This step has to be
repeated periodically even if no updates to the map were made, consuming bandwidth
even in idle state. Moreover, running AE reconciliation with two peers in parallel carries
the cost of potentially getting duplicate copies of the same data entries. In our topol-
ogy each node has a stable set of neighbors, connected by reliable connections. Thus,
remembering what was exchanged in the last round and transmitting just the difference
can save a lot of bandwidth. We therefore designed an improved protocol, which: (1)
avoids sending full O(|Viewn|) sized messages in each reconciliation; (2) lets traffic
reduce to zero when there are no writes and the overlay is stable; and (3) minimizes the
reception of duplicate data updates.

An entry in the map is An[k] = ⟨t, u⟩. The map itself has a version number An.u ∈
N which starts at 0 when the map is empty. The map is written one key at a time. Every
time a key is written the version number of the map is incremented, and the version
of the corresponding ⟨k, t⟩ entry is set to An.u. Thus no two entries carry the same
version, and An.u equals the maximal version number in the map. This versioning
scheme permits a protocol with per source sequential consistency, meaning that writes
to An are delivered in the same order in every other node p. The tables Mn(p) are
augmented with the following fields:



Algorithm 2 Attribute replication message handlers: received at n, sent from m.
1: procedure UPON-ATTUPDATE(Λ update)
2: Λn ← ∅
3: for all ⟨p, u⟩ ∈ update do
4: if u > Mn(p).u ∧ u > Mn(p).u pend then
5: Λn ← Λn ∪ ⟨p,Mn(p).u⟩; Mn(p).⟨u pend, trg pend⟩ ← ⟨u,m⟩;
6: if Λn ̸= ∅ then send AttRequest(Λn, false) to m;
7: procedure UPON-ATTREQUEST(Λ request, push)
8: AttDatan ← ∅;
9: for all ⟨p, u⟩ ∈ request do

10: if u < Mn(p).u then
11: for all ⟨k, t, u′⟩ ∈Mn(p) : u′ > u do AttDatan ← AttDatan ∪ ⟨p, k, t, u′⟩;
12: else if ¬push then AttDatan ← AttDatan ∪ ⟨p,⊥,⊥,⊥⟩;
13: send AttReply(AttDatan) to m

14: procedure UPON-ATTREPLY(AttData data)
15: Λn ← ∅;
16: for all dm(p, k, t, u) ∈ data do
17: if u = ⊥ then
18: Λn ← Λn ∪ ⟨p,Mn(p).u⟩;
19: Mn(p).⟨u pend, trg pend⟩ ← ⟨Mn(p).u, ∅⟩;
20: else if Mn(p)[k] = ∅ ∨Mn(p)[k].u < u then
21: Mn(p)[k]← ⟨t, u⟩; Mn(p).u← max(Mn(p).u, u);
22: if Λn ̸= ∅ then send AttRequest(Λn, true) to all neighbors;
23: for all Mn(p).u > Mn(p).u notified do
24: NOTIFY-ATTCHANGE(Mn(p)); Mn(p).u notified←Mn(p).u;

1. Mn(p).u = max{u : ⟨k, t, u⟩ ∈Mn(p)} – the last version of Ap known to n;
2. Mn(p).u sent – the version sent by n to all its neighbors during the last round;
3. Mn(p).pend trg – the neighbor ID to which a request was sent;
4. Mn(p).u pend – a version known to Mn(p).pend trg to which a request was sent;
5. Mn(p).u notified - the last version delivered to the application.

In every round, node n will reconcile its state with its overlay neighbors, so that
eventually Mn = Mm for every neighbor m. Let a digest Λn be a list of identifier
and table version pairs ⟨p,Mn(p).u⟩; and let AttDatan be list data entries dn(p, k, t, u),
where each entry is a single key-value-version tuple from Mn(p). The reconciliation
protocol has three stages – Update, Request, and Reply. (1) In the Update stage, node
n will prepare, at configurable periodic intervals, a differential digest of its state, con-
taining tables that changed since the last round: Λn ← {⟨p,Mn(p).u⟩ : Mn(p).u >
Mn(p).u sent}. If Λn ̸= ∅, it will be sent to all n’s neighbors, and the tables will be
marked as sent: ∀⟨p, u⟩ ∈ Λn,Mn(p).u sent ← u. (2) In the Request stage (Alg. 2
#1), after processing an update digest from m, node n sends m a request containing a
digest of its parts of the state that are less recent than those of m. The validity of the
request w.r.t. the preceding update is given special care (Alg. 2 #12,17-19). (3) In the
Reply stage (Alg. 2 #7), node n sends to node m the data entries that are more recent
than what node m declared it knows and needs. (4) Finally, when node n receives the



reply (Alg. 2 #14), it merges the incoming data into the existing tables, and notifies the
application on the respective attribute changes.

When node n acquires a new neighbor m, the full digest Λn ← {⟨p,Mn(p).u⟩, ∀p ∈
Viewn} is sent to m. In case a neighbor m disconnects (fails, leaves, or changes neigh-
bors), its ID is searched in all the Mn(p).pend trg fields. If found, it means that a re-
quest sent to it will not be answered. Thus, the pending request (i.e. ⟨p,Mn(p).u⟩) will
be resent to all neighbors. The attribute map of a node is valid to other nodes only when
the node is “alive”. Thus, when a node p leaves the overlay, all Mn(p), ∀n ̸= p, are
deleted. When a node joins the overlay, an empty replica is initialized in all other nodes.
As it acquires new neighbors, the joining node will push its state digest to its neighbors,
and vice versa. Key deletion is translated into a write An[k] ← ⟨⊥, An.u + 1⟩, which
is a kind of “death-certificate” for the key (see [12]).

5 Evaluation
Developing hardware and software for much larger systems than presently available has
always posed difficult challenges for those who must assess performance before full
scale measurements are possible. Our design lends itself to encapsulated component
performance testing even though supercomputers with one million nodes do not exist
yet. We divide our entire system into three components: management zone, base zones,
and the communication links between them (see Fig. 1-B). We isolated the required
relevant performance metrics for each component. Then we are able to devise tests
for each component at the required performance to achieve successful systems of one
million nodes. We fully implemented the hierarchical membership and attribute services
in C++. Our test bed was a rack of Blue Gene/P4. We used regular Linux on compute
nodes, rather than CNK5. The version we used provides full TCP/IP functionality on
all the networks, including the torus. We set out to test whether our system is up to the
task of managing the target scale by first testing a single zone to its full scale. Then we
test a hierarchical system that has the full number of base zones and management nodes
although with “stub” base zones. Each “stub” base zone is represented by a single node,
which injects in to the management zone the same traffic as a full base-zone. We used
τ = 200ms, Θ = 1, Kr = 3, Ks = 1 in all the experiments. The metrics chosen for
measuring our system‘s performance are biased towards the HPC use case. The main
difference between this use case and traditional (Internet and data-center) scenarios is
the way in which the system is brought up, the frequency of nodes joining and leaving
(churn), and the coupling between the nodes.

5.1 Boot time

Unlike conventional Internet-scale or data-center based systems in which the nodes
gradually join until the system gains size, a supercomputer or a partition of a supercom-
puter, usually boots all its nodes at once. Thus we want to make sure that the time it
takes to form a stable view upon boot is reasonable, in line with the time it takes for the
other processes that happen during boot (daemon startup, file system mount, etc).

4 Which includes 1024/64 compute/IO nodes, 32 bit integer, 850MHz, 4GB RAM [9].
5 Version 2.6.29.1 with IBM modifications for Blue Gene/P, available: http://git.
anl-external.org/bg-linux.repos/linux-2.6.29.1-BGP.git/
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First, we measure the time to a stable view of a single base zone, versus the number
of nodes (32-2048), assuming all the nodes boot at once (Fig. 2-Left). Results indicate
that a 2048-node zone yields a stable view in TBoot

Base(n = 2048) ≈ 5.7s (we used 2
processes per machine, with 1 process per machine results are approximately ≈ 30%
better). This tests the performance of the membership protocol. The results indicate
that the boot time for a single zone is linear in the number of nodes. This is to be
expected because every node has to get at least a single “alive” indication from every
other node, directly or indirectly. Next, we measure the time to a stable view of a 2-
layer setup with the number of base zones increasing from 16 to 1024, with 1 nodes in
each base zone serving as a stub, and 1 supervisor per base zone (Fig. 2-Left). Results
indicate that a 1024-node supervisor zone with 1024-base zones (1 stub node) boots in
TBoot
Sup (m = 1024, n = 1) ≈ 9.7s. The boot stabilization time of the management zone

includes: (1) stabilization of the management zone membership view and topology, (2)



connecting with the base zone delegates, (3) receiving the views of the base-zones,
and (4) distributing the summaries to all the members of the management zone using
the attribute service. This takes longer than the stabilization time of a base zone with
the same number of nodes, and shows linear scaling as well. These two measurements
allow us to make a worst-case estimate of the full system stabilization time, for different
combinations of management zone size (m) and base zone size (n), by making the
following worst case assumptions: (1) that the stabilization time of a stub base zone is
negligible, and (2) that the management zone starts after the base zones have stabilized.
This results in TBoot

Sup (m,n) / TBoot
Sup (m, 1) + TBoot

Base(n). Figure 2-Right shows that a
1M system with 2048-node base-zones and a 512-node management zone would boot
in ≈ TBoot

Sup (512, 1)+TBoot
Base(2048) ∼ 10.3s. Figure 2-Right also shows what would be

the optimal configuration of a management- and base-zones, for every system size, in
terms of boot time.

5.2 Leave-Join performance

We evaluate the leave-join performance by first booting a zone, and then forcing a num-
ber of nodes to fail concurrently. The victim nodes concurrently rejoin after a while.
In both cases we measure the average time to a stable view; in case of leaves this in-
cludes failure detection time. The time to stable view (Fig. 3, top 6 curves) measures the
propagation time of concurrent membership changes using the normal membership and
attribute dissemination protocol. Membership stabilization time follows a logarithmic
relation with zone size, since our topology creates a graph with logarithmic diameter
and average path length. (We verified that ∀N the diameter is≤ logKr

N ). The number
of nodes leaving or joining has hardly any effect, since as long as the ratio of tran-
sient nodes to total zone size is not too high, the topology retains its desirable robust
“logarithmic” features (diameter, average path length) in the face of churn [11]. Join
events take exactly 1 aggregation delay (τ ) longer than leaves, since the joining node
takes one round to discover peers before it spreads its identity, in an attempt to build
a “good” topology right away. Membership events are propagated as node-census at-
tribute events in the supervisor zone. The propagation time follows the same rule as
in base zones, since it is influenced by the (identical) topology of the overlay and the
aggregation time. Therefore we can estimate the stabilization time of a full system, as
in Sec. 5.1, by adding the stabilization times of the base- and supervisor-zones, ac-
cording to their respective sizes. For example, in a 1M node system with a 512/2048
supervisor/base-zone configuration, a leave event would propagate to all the supervisors
in ≈700ms.

5.3 High priority monitoring

Figure 3 (bottom 3 curves) displays the time it takes an HPM node to reach a stable view
after leave events (same experiment as above). The delay is almost independent of zone
size, and is ≈30ms for almost all cases. The round-trip delay between any node in Blue
Gene/P is below 1ms; we therefore conclude that this time is mainly failure detection
time, which is independent of size. When the ratio of failed nodes to the zones size is
too large (e.g. 16 out of 32), detection time grows because of the likelihood that some



failed node X would have all its neighbors failing as well. The failure of node X is then
discovered by some surviving node that tries to connect to it as a successor, and fails.

6 Related Work
Membership services present a wide spectrum of semantics [14], which vary from con-
sistent views like Virtual Synchrony [15], to eventual consistency [16] as implemented
in Cassandra [17], and to partial views either randomized as in SCAMP [18] or struc-
tured as in Chord [19]. Scalability increases as semantics become less strict, from hun-
dreds in VS, thousands in eventual consistency, and tens of thousands for partial views.
An important class of these services relies on “gossip” protocols [20], where peers pe-
riodically exchange parts of their state with a random selection of peers. Gossip based
protocols are extremely robust. However, they are slow to detect failures [10], and gen-
erate traffic even when no membership changes occur. Overlay networks in which peers
have stable connections retain similar robustness by choosing peers such that the result-
ing overlay network remains well connected in the face of failures, as is Araneola [11]
and Symphony [21]. The advantages of stable peers are (1) efficient distributed fail-
ure detection [10, 22]; (2) the ability to minimize “OS jitter” [23]; and (3) the ability
to implement additional functions like a publish-subscribe service [8], and a key-value
store [19, 17]. Hierarchical membership schemes were proposed by HiSCAMP [24],
where the focus is on a dynamic self organizing hierarchy, and more recently by Cen-
sus [25] where the focus is on self-organization reflecting the geographic distribution
of the nodes, and on delivering consistent views. Our implementation focuses on scala-
bility and is an order of magnitude greater than Census and HiScamp (1M vs. 10K and
50K, resp.); and fast failure detection, which at 1M nodes is less than 100ms for the
HPM and takes around 800ms to form a consistent view (Census [25] chooses to pro-
vide a consistent view every 30 seconds for a system of 10K nodes). An early attempt to
develop a membership service specifically for HPC introduced a flat tree-based mem-
bership algorithm for MPI environments, and was evaluated only up to 1024 nodes [4].
More recently the CIFTS project (e.g [7]) was devoted to fault-tolerance in HPC sys-
tems. Our approach adopts a much more general failure model than the one adopted by
CIFTS, and therefore uses a different overlay topology (expander vs. tree) and different
algorithms.

7 Conclusions
We demonstrated that membership services can scale effectively to upcoming HPC sys-
tem sizes, supporting continuous availability, for a next generation of HPC run-time
support, and system administration. We believe that ExaScale size deployments can
be made resiliency aware by employing this work. We are currently working to inte-
grate our membership and attribute replication services with Charm++ [6], in order to
demonstrate a true fault tolerant, elastic, parallel runtime.
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