
�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&�����(��� �

Collaborative Open Market to Place
Objects at your Service

D6.4.2

Marketplace integration – Final version

Project Acronym COMPOSE

Project Title Collaborative Open Market to Place Objects at your Service

Project Number 317862

Work Package WP6 Open marketplace

Lead Beneficiary IBM

Editor Benny Mandler IBM

Reviewer Fabio Antonelli CN

Reviewer Alex Futasz FOKUS

Dissemination Level PU

Contractual Delivery Date 31/10/2015

Actual Delivery Date 31/10/2015

Version V1.0

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&��
��(��� �

Abstract

The final version of the COMPOSE integrated platform is described. The integrated platform
took technological pieces developed in all the technical WPs and connected them into a
cohesive solution that can benefit external stakeholders. The COMPOSE integrated platform
offers on the one hand developers the opportunity to easily create applications which are based
on IoT smart devices. On the other hand it takes care of data ingestion and making the data
accessible to applications. In the middle it takes care of all deployment, hosting, and
connections needed in an IoT cloud based environment.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&�����(��� �

Document History

Version Date Comments

V0.1 01/07/2015 Initial skeleton version

V0.2 06/10/2015 First draft

V0.3 10/10/2015 Add demo details

V0.4 20/10/2015 Incorporate contribution from RETE

V0.5 27/10/2015 Incorporate contribution from PASSAU

V0.6 28/10/2015 Incorporate contribution from BSC / FOKUS

V1.0 31/10/2015 Finalize and integrate all contributions

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&��%��(��� �

�

Table of Contents

)��������$$$�
�

#��!*����+����� �$$$���

,�����(���&!����$$�-�

,�����(�.������$$�	�

)���� *��$$$���

�� /����0!������$$���

� +�&1�����������!���'��������*����������0��������� �����$$���

$�� .1��0�����������������$$$��2�

$�$�� .1��0������������������������*����$$$$$$$$$$$ $$����

$
� .1�����!0��!����*��$$����

$
$�� .1���!����*���������*���3�$$$��
�

$�� #���� *������0���(��� ����*���&�*����$$$$$$$$$$ $$����

$�$�� #���� *������0���(��� ����*���&�*�����������* ����$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$��%�

$%� ���!��� �$$��-�

$%$�� /0����� �����&�*���$$��-�

$%$
� #���������������$$$��	�

$%$�� 4��!�����������&���$$$��	�

$%$%� ���������������$$$����

$%$-� 5��&��,�����$$$����

$%$	� ����� �/�(��*������������$$����

$%$�� ����� �#��������������$$$����

$%$�� # ��*������6���������$$$��7�

$%$7� ���������(����*������0����(�����4����!�����$$ $$$��7�

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&��-��(��� �

$-� ��������#������� �$$$��7�

$-$�� .1����������0������� ��������*����$$$$$$$$$$$ $$$�
2�

$	� #��������&�*����$$�
2�

$	$�� .1��#��������&�*�����������*����$$$$$$$$$$$$$ $$$�
��

�� 81����������&�0�*��������0�$$$�
��

�$�� #������0����6�$$$�
	�

�$�$�� 8���#��1����03�$$�
7�

%� /���&����0�����(��*�/������������9����(�&!������� $$$�
7�

List of Figures

��&!����3����������������(��*���*��������$$$$$$$$ $$�7�

��&!���
3����!0��!����*����*��������$$$$$$$$$$$$$$$ $$$����

��&!����3�/�������������(��1��0���� *������*������� $$����

��&!���%3�#���� *������*��������������*����$$$$$$$$ $$��%�

��&!���-3���������#������� �0���� *����$$$$$$$$$$$$ $$$�
2�

��&!���	3�#��������&�*����0���� *����$$$$$$$$$$$$$$ $$$�
��

��&!����3�,�*����������������$$$�

�

��&!����3��1�����&��������������������$$$$$$$$$$$$ $$$�

�

��&!���73��*����8���1��������������$$$�
��

��&!����23�#�������������&������$$�
%�

��&!�����3�:!�!��0��������������������$$$$$$$$$$$$$ $$�
%�

��&!����
3�;���(����1����������������$$$$$$$$$$$$$ $$$�
-�

��&!�����3�*����0�*��6���(��6�$$$�
-�

��&!����%3��1����!����!������*�0������0�����0������ $$�
7�

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&��	��(��� �

List of Tables

.������3�)���� *��������$$���

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&�����(��� �

Acronyms

Table 1: Acronyms table

Acronym Meaning

API Application Programming Interface

CF Cloud Foundry

COMPOSE Collaborative Open Market to Place Objects at your Service

DPP Data processing Pipeline

GUI Graphical User Interface

IDM Identity Management

IoT Internet of Things

JSON Java Script Object Notation

PaaS Platform as a Service

PDP Policy Decision Point

PIP Policy Information Point

REST Representational State Transfer

SDK Software Development Kit

SO Service Object

SU Sensor Update

SPARQL SPARQL Protocol And RDF Query Language

UAA User Account and Authentication

�

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&�����(��� �

1 Introduction

This document accompanies the demonstration of the final integrated COMPOSE platform. In
this version all of the capabilities envisioned within the platform are in place. Contributions
from all the technical WPs have made it into this version of the platform, thus providing the full
spectrum of COMPOSE platform capabilities.

The main purpose of this document is to accompany the technical demonstration and provide
the necessary background information concerning components and their interactions. It is not
intended to be a full-fledged design document. More detailed information is provided in the
final version of the COMPOSE architecture document (D1.2.2), and individual components are
detailed in their own deliverables. The most relevant detailed deliverable is D4.1.1 – “Highly
scalable runtime environment for the COMPOSE ecosystem”.

2 High level picture – Main components and
interactions

Figure 1 presents an overall view of the COMPOSE integrated platform. The figure shows the
main components which are a part of the platform, and the main interactions between the
various components. At its core the COMPOSE platform is a customization of an openly
available PaaS infrastructure (Cloud Foundry1), making it more suitable as a platform to serve
the IoT domain. Thus, as can be seen in the figure, COMPOSE is a cloud platform, with specific
capabilities that make it easier to develop and deploy IoT based applications. On the left hand
side of the figure are the COMPOSE cloud services, while on the right hand side are the
COMPOSE components which are deployed as cloud applications.

Most of the components operate within the cloud environment; the main exception being the
developers’ portal, which is a crucial COMPOSE component that operates outside the cloud, but
interacts tightly with it. It serves as the connection point between external developers and the
COMPOSE platform. It mediates between the platform and the external world and makes it
easier to consume COMPOSE offered capabilities. These capabilities include assisted
application development, through security, and all the way to automated application deployment
into the cloud.

The developers’ portal is the only access point into the COMPOSE platform for end-users and
developers as one. It integrates various front-end components for IoT application development
as well as back-end components which enable the COMPOSE core features. The interworking
between all components forms the integrated COMPOSE platform. ��&!���� Figure 1 shows the
core components of the COMPOSE back-end. Data flows from bottom-up through the data
management layer and is made available to applications produced by the developers’ portal in a
variety of manners. Integrated components such as data management, service discovery,
security and cloud deployment are highlighted in this figure. The developers’ portal via the GUI
provides direct access to particular features of the back-end components.

���
� �1���3<<���!0(�!�0� $��&<��0�=$1�*��

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&��7��(��� �

COMPOSE platform components are deployed within the cloud run-time either as cloud
applications or cloud services, depending on the requirements and mode of interaction with each
such component.

The COMPOSE controller, which is a central point of communication between the cloud
platform and the developers’ portal is deployed as a cloud application, thus making it easily
accessible to the external world on the one hand while internally being able to bind to the
COMPOSE services it needs to interact with for its proper operation.

Security components, such as the Identity Management, are also deployed as cloud applications,
enabling the COMPOSE controller to use it, as well as external entities, such as the developers’’
portal.

The discovery component is divided into a front-end and a back-end. The front-end is a light-
weight cloud application, enabling external entities to interact with it, while the bulk of the work
is performed by a back-end, which is deployed as a cloud service. Such a deployment enables
the back-end to be state-full as it needs to be.

�

Figure 1: Main COMPOSE platform components

The data management is deployed as a cloud service, enabling it to be state-full, and enables
only internal COMPOSE cloud applications to bind to it via its HTTP based API. The
communication and monitoring infrastructure is deployed also as a cloud service, for the same
reasons, but it enables thin clients to run as or within cloud applications, and bind to the
communication servers at the back-end.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&���2��(� �� �

2.1 The developers portal

The developers’ portal is a multi-tenant one stop shop for developers who wish to create IoT
based applications in COMPOSE. This portal serves as the entry point for external users of the
platform, whether the users are application developers, smart objects providers, or end-users
who consume COMPOSE applications. The developers’ portal provides a user-friendly GUI
based interaction mode which helps developers create the application of their dreams.

The developers’ portal contains three parts that guide the developers through the process of
application creation. The smart objects manager is used to create and manage service objects,
which are the COMPOSE internal digital counter-parts of real world physical smart objects. It
provides features for smart object virtualization, management and policies for authorization and
authentication. Once a service object is successfully created end-users are directed to the smart
object composer for creating applications of their choice, using data coming from the smart
objects, or directing commands to these smart objects. The smart object composer integrates
capabilities for applications’ discovery, security and deployment. Finally, the automations
component allows for sharing of created compositions with other registered users. Developers
can choose to share their creations publicly which are persisted in storage. These persisted
automations are available for other users for instantiation and deployment.

At its back-end the developers’ portal interacts with the cloud infrastructure in order to deploy,
run, and manage created applications. The main interactions of the developers’ portal are with:

1. Security – to identify and authenticate users; obtain proper tokens for smart object
interaction, and access to applications; identify applications with security flaws and
recommend corrections.

2. Cloud deployment – to make the actual deployment of the created application.

3. Service discovery – to locate existing building blocks that developers can use for
creating a new application.

4. Service recommendation – present the developers with recommendations concerning
the choice between different services that can serve the same functionality.

5. Service composition – provide a front-end for the assisted composition services to help
guide the developer to the COMPOSE application that will fulfil his requirements.

6. SDKs – to integrate and access various Smart Objects from the developer portal.

7. Service composition – to connect existing building blocks to workflow applications and
make them accessible via RESTful APIs.

8. Data management (ServioTicy) for registering service objects and data processing
pipes, and displaying their data streams.

9. Reputation: present to the developers the reputation score associated to COMPOSE
entities of interest to him.

As of October the final prototype of the developers’ portal has about 320 registered users. Each
month the portal has about 340 page views. The top five visiting countries are the United States
of America, Germany, Italy, United Kingdom and India, in that order.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&������(� �� �

2.1.1 The developers portal environment

� Ubuntu 14.04.2 LTS operating system

� Developer portal implemented as Node.js v0.10.33 application

� Apps that are deployed to Cloud Foundry use Node.js v.0.10.33

� The Smart Object Manager uses Angular.js v1.2.10 framework

� The Smart Object Composer component based on Node-RED v0.10.7-git

� Uses MongoDB v2.6.3 for user management�

� Service Objects API running in BSC serviced at http://api.servioticy.com/ �

� Lifecycle Management API (LCM) running in Cloud Foundry
(http://docs.composelifecycle.apiary.io/)�

� iServe API running in Cloud Foundry (http://compose.bsc.es:9082/iserve/docs/)�

� Identity Management API (IDM) running in Cloud Foundry
(http://docs.composeidmusers.apiary.io/)�

2.2 The cloud run-time

The cloud run-time hosts COMPOSE entities and makes applications available to the external
end-users. The COMPOSE platform cloud run-time consists of a customized version of the
openly available Cloud Foundry PaaS. The cloud run-time hosts COMPOSE application as well
as the front-end of COMPOSE specific infrastructure services such as the discovery service. In
addition the run-time provides binding mechanisms for COMPOSE applications to connect to
the infrastructure services they require.

�

Figure 2: Cloud run-time components

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&���
��(� �� �

The main interactions of this component are with:

1. Deployment (COMPOSE controller) – All COMPOSE applications are deployed as
Cloud Foundry (CF) applications using a predefined Node-RED template with Node.js
runtime. The life cycle management component, which is a part of the deployment
component, absorbs its information from the COMPOSE run-time.

2. Service discovery – operates as a part of the cloud environment. This component’s
back-end runs as a COMPOSE service which COMPOSE applications can bind to.
Internally it uses services offered by the cloud run-time, such as a database.

3. Data Management – operates as a part of the cloud environment. This component’s
back-end runs as a COMPOSE service which COMPOSE applications can bind to.

4. Security – COMPOSE security interacts with cloud security mechanisms provided by
the UAA which is part of the CF ecosystem, and adds specific security capabilities. The
users that are created in COMPOSE are essentially UAA users, so each major action
like creating or deleting COMPOSE applications is authenticated by CF itself.

5. Scalable communication infrastructure which is used, among other capabilities, for
connecting between the service objects and the COMPOSE applications provides
applications with an easy way of sharing data via pub/sub semantics, and is also built
from the ground-up with auto-recovery and scalability considerations.

6. Monitoring infrastructure which collects information on the state of service objects,
COMPOSE applications, COMPOSE infrastructure, and cloud resources. The
monitoring infrastructure taps into CF's native message passing mechanism (the NATS
service) in order to minimize latency and incorrect classifications (false
positive/negative).

2.2.1 The run-time environment:

� The COMPOSE cloud is currently comprised of three Machines installed with Ubuntu
10.04.4 LTS :�

� cloud01: runs a Cloud Foundry environment (build 175, installed via nise bosh)�

� abiell: functions as an additional DEA server for the CF environment, and also hosts
additional services.�

� Cfdea: functions as the main DEA server as it has 130GB of RAM. �

� External services run on cloud01 and abiell, and are introduced to CF apps using service
brokers which their backend runs locally and their front-end runs as CF apps.

� Compose Communication Bus (CSB) runs as a CF application – 3 instances total,
each instance embeds a CSB node inside a web application – which is used for
auto-discovery of all peer nodes via http requests in order to establish a shared view
of external IP addresses and routable ports of all instances, which in turn is
published to CSB client applications by having them query any of the 3 instances'
web application.

� MySQL-shared: Binding to the instance creates a database and a new user.
Unbinding deletes the user and the database from the DB. The service is available
both in cloud01 and in abiell (essentially exposing 2 different services).

� iServe: The iServe instance runs as a Tomcat servlet on cloud01.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&������(� �� �

� Redis 2.8.2 – hosted on cloud01, and is used by iServe for caching discovery related
entities and compositions.

� MongoDB – Used by the Security Server, installed on abiell and the bind returns
simply the MongoDB URI.

� Cloud Foundry instance managed with cf-cli (go executable)

� Service Objects API running in BSC serviced at http://api.servioticy.com/ �

� The Identity Management service (sec. 2.4.1) runs as a CF app and stores data inside the
MySQL service which it is bound to.

� The Security Server is bound to the MongoDB service and uses it to store security policies.

� The COMPOSE controller consists of 2 independent parts:

� The Life Cycle Manager (LCM) – a Node.js application that is deployed as a CF app
and uses the MySQL service for persistent storage. Its functions are tracking
registration and deployment of all COMPOSE entities in iServe and in ServioTicy.

� The Mediator – a java web servlet that has no need of persistence, and simply deploys
COMPOSE applications to CF on behalf of COMPOSE users (through the LCM). It
receives workflows (JSON objects describing the application logic designed in the
Developers’ Portal), prepares a Node-RED runtime for them and deploys them to CF by
implementing the Cloud Controller client API.

2.3 Deployment and life cycle management

The deployment component is in charge of taking the applications designed within the
developers portal and transforming them into a COMPOSE entity which can be deployed,
hosted, and managed within ServioTicy or the COMPOSE CF-based cloud platform and added
services. In addition, this component tracks and governs the lifecycle management of
COMPOSE applications. These COMPOSE entities go inside the lifecycle manager which
provides a check for security and policy using the IDM and PDP components, and the registry
in the iServe catalogue.

�

Figure 3: Interactions of the deployment component

The deployment component works internally with a mediator component which is in charge of
the actual deployment to the cloud via the cloud controller. The mediator serves also as an
orchestration engine which takes care of run-time aspects of COMPOSE workflows being

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&���%��(� �� �

deployed to the cloud platform. In addition, the deployment component interacts internally with
ServioTicy to deploy Service Object and Data Processing Pipes.

A COMPOSE entity can be one of the following types:

� Service Object
� Data Processing Pipe
� COMPOSE application
� COMPOSE workflow

The main interactions of this component are with:

1. Security – The deployment component interacts with IDM for authentication and
authorization of the COMPOSE entities. There are also other interactions to verify that
the user can deploy, start, stop or delete an entity.

2. Cloud run-time – For the actual deployment of the application within the COMPOSE
cloud run-time.

3. Data Management – For the creation of service objects and data processing pipe.
4. Service discovery – For registering entities.

�

2.3.1 Deployment and life cycle management environm ent

The deployment and life cycle management is composed of different CF services and CF
applications running in BSC. It further interacts with the cloud controller in order to deploy,
monitor, and manage COMPOSE applications.

�

Figure 4: Deployment component environment�

� Life cycle management: Developed using node.js (0.10.33).

o The main modules that LCM depends on are async, dot, ecstatic, express,
log4js, node-uuid, sequelize and urllib.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&���-��(� �� �

o There is an API to interact with this component
(docs.composelifecycle.apiary.io)

o LCM interacts directly with these other COMPOSE Components
� IDM : Identity management
� Mediator: to deploy to Cloud Foundry
� iServe: to register entities
� PDP: to check policy
� ServioTicy: to deploy service objects and data processing pipes.

o MySQL – Used by the life cycle management to persist data relevant for the
LCM itself. It is used also as a file repository.

� Prototype Service Life Cycle: is built using node.js (0.10.33).

o The main modules that the LCM Prototype depends on are express, jade, stylus,
urllib,

o It's a web application used to test the LCM API.
o The LCM Prototype interacts directly with these other COMPOSE Components

� LCM.
� IDM.

2.4 Security

2.4.1 Identity Management

Identity management deals with authentication of entities, and administration of their identity
information. Identity Management is a prerequisite in order to define security policies, since an
entity, and its entity information must be referenced, so the policy enforcement framework can
choose the right policy for a given entity.

Identity Management is deployed as a cloud foundry application, which can be used not only by
COMPOSE components (i.e. developed by the consortium), but also by COMPOSE application
developers who may want to use identity management as a Single Sign On solution for
COMPOSE.

To account for scalability, identity information for Service Objects is replicated in the data
management layer, so it can be accessed by the local Policy Decision Point locally. To replicate
the identity management information effectively between identity management and the data
management layer, a private API exposed by the data management layer is used. Furthermore,
to deal with the same problem in the application runtime, identity management uses the CSB
messaging system defined and implemented in WP4 to send real-time updates to the local
Policy Decision Points running in the application runtime too.

This component interacts with:

1. Cloud-runtime: identity management encapsulates the process of requesting a token for
users from the cloud User Account and Authentication server. It registers a user in the
proper Cloud Foundry space with the Cloud Controller to enable him/her to push
COMPOSE applications to the cloud.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&���	��(� �� �

2. Data Management: The data management component registers service objects once they
are created; furthermore, Identity Management is queried to authenticate external
devices providing data to the Data Management layer.

3. Developers Portal: The developers’ portal authenticates users with identity
management.

4. Deployment and life cycle management: This component registers new COMPOSE
applications in identity management.

-$ Reputation manager: identity management authenticates users providing feedback for
COMPOSE entities.�

2.4.2 Data Provenance

The integrated data provenance module collects precise information about the heritage of data
items in the data management layer (WP2) and also in the application layer. This information is
retrieved by modifications to the corresponding execution environment. In case of the data
management layer this execution environment is a modified Rhino interpreter that analyses the
user-defined source code of service-objects (SO) or data processing pipelines. In case of the
application layer the execution environment is a modified Node-RED instance.

The provenance data representation is in JSON format, and is part of the security meta-data. It
has a unified format throughout the application and data management layer. The provenance
data for sensor updates is stored together with the actual data item in the Couch Base database
of the data management layer. To ensure scalability it is possible to activate or deactivate the
provenance collection for a particular SOs or DPPs. The provenance data in the application
layer flows during runtime with the actual messages inside Node-RED.

The data provenance module interacts with the data management layer during the generation of
new data item (SU). This can be the case when a new data item is pushed to the platform as well
as when data items are dispatched in the data management layer. The integrated provenance
module has also the capabilities to transmit and merge provenance data between both layers.
This is necessary if a sensor update is read inside the application layer, in this case the
provenance data of the SU is merged with the current provenance data of the message in the
application layer. �

2.4.3 Reputation Manager

The reputation manager collects information from the Data Management Layer, and from the
application runtime, in order to hold information about popularity and activity of Service
Objects, Data Processing Pipes, applications and workflows. Furthermore, it provides
aggregated reputation information to the Developers’ Portal, and also to the service discovery.
The latter allows users to define trust preferences which include reputation values from
COMPOSE entities. Additionally, the reputation API is accessible from COMPOSE
applications, in case developers want to build applications leveraging its functionality.

This component interacts with:

1. Application runtime local PDP: to collect events showing interaction between
applications. This is used for popularity.

2. Data Management: The data management component also logs events showing
whenever a sensor update was delivered successfully or failed to do so, in Service

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&������(� �� �

Objects and Data Processing Pipes. This information is then fed into the reputation
manager, in order to calculate popularity and activity scores for entities within the data
management layer.

3. Developers’ Portal: The developers portal collects feedback information, and at the
same time displays reputation information to users

4. Service Discovery: The API from the reputation manager is used by the trust component
inside the service discovery to influence the results shown to the user by considering the
reputation values of COMPOSE application, Service Objects, etc.

5. Identity Management: In order to ensure that only authenticated users can provide
feedback, the reputation API uses identity management to verify and obtain identity
information about the user providing feedback. �

2.4.4 Contract Store

The contract store is used to persistently store and retrieve contracts. This includes the contracts
generated by the static analysis as well as developer contracts. Developer contracts are able to
refine the automatically generated contracts with the help of additional information provided by
the developers of the corresponding entity.

Contracts for all kind of entities can be stored and retrieved by the contract store, this includes
among others SOs , DPPs, Node-RED nodes, COMPOSE-applications. Contracts are mainly
generated by the static information flow analysis, performed with the modified TAJS. This
process is a computation intensive process and therefore this process should not be performed
several times for the same entity, highlighting the importance of the contract store.

The contracts for entities are mainly used in the static workflow analysis which analyses also
the information flow between entities. This analysis is performed during the verification step of
COMPOSE-applications and COMPOSE-workflows. This process triggers also the contract
generation of single entities that do not yet have a contract.

This verification step itself is integrated into the life cycle management component and is
triggered during deployment. It is also possible to trigger the verification directly in the user
interface.

In order to improve the scalability of the contract store it is possible to have a local instance of
the contract store that stores the information for this particular instance relevant contracts. The
local instances are synchronised with the central contract store with the help of the CSB
messaging system. The central contract store is deployed in Cloud foundry and the interaction
with it is possible via a REST API. Local instances are directly included in the corresponding
environment. �

2.4.5 Usage Locks

The policy language Usage Locks, specifically developed for this project, is used in all aspects
related to policy information, evaluation, and decision as well as for contract and conflict
description and definition. Appropriate processing primitives and user interfaces have been
developed and integrated.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&������(� �� �

2.4.6 Policy Information Point

The policy information point (PIP) is the component used to persistently store and retrieve
policies for all kind of entities. There are local as well as a central PIP, to provide fast access to
policies for a high number of requests. The interaction to the central PIP, which is deployed in
Cloud foundry is realised via a REST API. The policies in the local PIPs can be directly
accessed by its corresponding component, into which the local PIP was integrated. Local PIPs
are automatically synchronised with the central PIP in order to propagate policy changes with
the help of the CSB messaging system.

This component interacts with:

1. Application runtime: In the application runtime the PIP provides the required
policies for the enforcement.

2. Developers Portal: The developers portal provides the interface for developers to
specify policies for their entities. These policies are then stored in the PIP.

3. Service Discovery: The filter implemented in iServe to retrieve only entities that are
accessible by the person that sends the query uses the PIP to get the corresponding
policies.

%$ Life cycle: During all steps of the life cycle of entities the PIP provides the required
policies for the enforcement. �

2.4.7 Policy Decision Point

The policy decision point (PDP) evaluates polices and detects if a certain flow or access is
allowed or not. This evaluation has to be performed in several places and components to ensure
that information is only accessible by authorized entities.

To provide a scalable policy evaluation, local instances of the PDP are used. These local
instances are included in several COMPOSE infrastructure components.

The PDP is integrated into:

1. Data management layer: Inside the data management layer the PDP is necessary to
support efficient policy evaluation during enforcement of flows, during dispatching,
when interacting with data via its API, and during creation of subscriptions using
MQTT or CSB.

2. Application layer: The application layer consists of a modified runtime of Node-RED.
During deployment of a flow, the access between data processing pipelines, COMPOSE
applications, and users to data or applications is controlled using local policy decision
points.

3. Life cycle management: Before the deployment and also before the state changes of a
deployed entity, policy evaluation takes place.

4. Discovery: A filter is integrated into iServe to filter query results based on the policies
together with the user sending the query.

5. Policy information point: Policy evaluation is required for access control to the PIP.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&���7��(� �� �

2.4.8 Dynamic Flow Control

The policy decisions mentioned in the previous section directly trigger policy enforcement.
Apart from the integration of the appropriate policy enforcement points, the COMPOSE runtime
also deploys dynamic flow control. For this purpose Node-RED has been adjusted as follows:

1. During message exchange inside Node-RED, policy information about each message is
maintained and communicated to the next node to be executed. Thus, flow control can
be enforced for each single message and its respective fields.

2. Each message also carries further state information generated by security services, e.g.
about the user using an application. Messages also maintain the state of security locks
which have been opened or closed by security services, e.g. whether a user was
authenticated or not.

�$ In order to support the conservative propagation of data-centric security policies the
execution of the pre-deployed node types in Node-RED uses a contract. The contract
specifies how messages are processed and how they change their security policies. For
the execution of function nodes which can further execute user-defined JavaScript, a
modified version of JSFlow is deployed which performs dynamic policy propagation.�

2.4.9 Static Enforcement and Conflict Resolution

In order to simplify the development of secure and accessible applications, we integrated a static
analysis component in the marketplace. It processes a workflow generated in glue.things and
verifies the correctness of access between nodes and the compliance of the flows of information
between nodes and COMPOSE applications. An appropriate user interface has been integrated
into glue.things. The latter also processes the results of this analysis. An extra security tab in the
sideboard of Node-RED allows the visualisation of various error types.

Further, the static analysis component is supported by a reconfiguration component. It processes
the errors found by the static enforcement component and tries to solve the conflicts therein. A
rated set of solutions is communicated to glue.things which can display the required changes to
a workflow to make it compliant with its security policies. The user can further apply a solution
to a workflow to fix it.

2.5 Service Discovery

With the vast amount of applications and service objects anticipated in a platform such a
COMPOSE the chore of a developer would be made much easier if the developer could locate
existing building blocks that he can re-use to create his own masterpiece. For this reason
COMPOSE contains a service discovery component which holds semantically enhanced service
descriptions making it easier to discover services based on various criteria.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&��
2��(� �� �

�

Figure 5: Service Discovery deployment

Each newly registered service object in the platform gets registered with the service discovery
component as a part of its registration process. The same holds for each new application created
and deployed in the platform. A developer can pose semantic queries from the developers’’
portal to look for building blocks he can use for a newly designed application. Once found, such
an entity immediately becomes an operational block within the application being designed.

2.5.1 The service discovery environment

At the back-end a Tomcat7 servlet hosts iServe as a COMPOSE platform service. iServe in turn
is connected to an application-layer load-balancer, running as a jetty application, that redirects
SPARQL queries to a PaxDB cluster.

The PaxDB cluster consists of 3 PaxDB nodes (each running on a different physical server) with
a single master which receives write requests, while all cluster nodes can service read requests
(which are randomly distributed among all nodes). The master and all nodes are periodically
probed by the application-layer load balancer, and if a node is considered faulty, it won't receive
requests until it successfully responds to a probe. If the master fails, a new master is elected.

In order to respond to free text search queries, each PaxDB instance uses a Solr cluster (3 nodes
in total, 1 for each PaxDB instance hosted in the same physical server to maximise redundancy
and minimize network round-trips).

2.6 Data Management

The data management service forms an ingestion layer which takes care of the bi-directional
communication with the external smart objects. In addition this component takes care of storing
the data flowing into the platform from the smart objects, as well as providing real-time data
processing, manipulation, and notification capabilities. This layer consists of a historical data
repository in addition to a programmable real-time streams processing unit. In addition a search
service over the data is provided as well. The basic internal representation of a smart object is
called a COMPOSE service object, whose endpoint exposes a JSON and REST based API for
creating, updating, and obtaining date from service objects.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&��
���(� �� �

2.6.1 The Data Management environment

The data management components are deployed as a CF service that is exposed and made
available to CF applications. The entry point for CF applications is either the HTTP REST API
or the MQTT/STOMP bridge that connects the data management environment with the external
entities using TCP or WebSockets. The data management service is composed of several
components: CouchBase for the registry and data repository; ElasticSearch to index and provide
querying mechanisms on the repository; Apache STORM as the event processing and
dispatching engine; Jetty and Jersey for the public and internal REST API; Apache Apollo as
the multi-protocol message broker; and several NodeJS components to bridge the REST API
with external MQTT/STOMP entities. The data management environment interacts with the
security component (Identity Management) to enforce Authentication and Authorization. And it
provides capabilities to the COMPOSE platform for data provenance and reputation through the
STORM topology.

�

Figure 6: Data Management deployment

3 What is being demonstrated

The cover story is an application (COMPOSE workflow) that takes place in a supermarket; the
same supermarket that is used for the COMPOSE smart retail pilot. The application will identify
when a long queue is formed in front of one of the cash registers and will initiate a process to
open a new cash register. The cash register to be opened will be signalled by a light bulb being
turned on, and an employee will be selected to attend the new cash register. The selected
employee will be the one located closest to the cash register to be opened, and he will be alerted
by a message sent to his smart watch.

COMPOSE Entities which comprise the demonstration:

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&��

��(� �� �

� Service Objects: lamp (see ��&!����), shopping carts (see ��&!����), smart watches (see
��&!���7), active TAGs

� Data Processing Pipes: geo fence around the cash registers (see ��&!����2), carts
aggregation.

� COMPOSE applications: Queue Detector (see ��&!�����), Closest employee to the cash
register, Notification Manager (see ��&!����
), Cash register selection, Cash register
light switch

� COMPOSE workflows: The combined demo (see ��&!�����)

�

Figure 7: Lamp Service Object

�

Figure 8: Shopping Cart Service Object

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&��
���(� �� �

�

Figure 9: Smart Watch Service Object

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&��
%��(� �� �

�

Figure 10: Data Processing Pipe

�

Figure 11: Queue detector application

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&��
-��(� �� �

�

Figure 12: Notify cashier application

�

Figure 13: main demo workflow

The combined capabilities of all COMPOSE components are demonstrated. Naturally not all
capabilities of all components are demonstrated, but rather the major capabilities and
interactions are shown.

�$ The full flow of registering a new Service Object (or a data processing pipe) into the
platform is demonstrated.

This flow includes a developer interacting with the developers’ portal, while in the

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&��
	��(� �� �

background the COMPOSE controller is invoked, which in turn calls the security and
service discovery components. Finally the request is passed into the cloud run-time and
to the appropriate service, which in this case is the data management layer.�

$ The full flow of interacting with a registered service object. This entails obtaining data
stored in the Service Object and sending commands to an object which supports
actuation.

Internal interactions with COMPOSE components resemble the ones described in the
first flow.�

�$ The full flow of creating a new COMPOSE application (or a workflow) which makes
use of previously registered Service Objects.

Internal interaction with COMPOSE components resemble the ones described in the
first flow, only that at the last stage a new COMPOSE application is deployed and runs
on the underlying cloud infrastructure.�

%$ Interaction with the service discovery component, as previously registered entities are
located by queries invoked from the developers’ portal, and used in new applications. In
addition, workflows are composed by using the underlying assisted composition engine.�

-$ Scalable communication infrastructure is being used by adding notifications from
service objects to COMPOSE applications.�

3.1 Detailed view

The final COMPOSE demo will showcase most of the main features enabled by the COMPOSE
platform. The demo will be based on the smart retail application scenario. The story line will be
centered on the supermarket located in Trento, where the localization infrastructure is currently
deployed.

Among the COMPOSE capabilities we intend to highlight are:

� Common model for easy integration of heterogeneous smart objects

� Easy creation of application based on object data streams

� Object marketplace, same objects are used under different views (brands, store
managers, users, etc.).

� Integrated security aspects

� Multitenancy building applications (many developers, integrating different applications)

Enclosed is a list of COMPOSE components that have been used:

Feature COMPOSE
Enabler

Description/Benefit

Collect sensor
information: location

ServioTicy -
Service Objects

Location info from carts and employees.
Present a unified model to collect information
from different sources. Scalable and real time
data ingestion and processing.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&��
���(� �� �

Aggregation of sensor
information

ServioTicy - Data
Processing Pipeline

Provide developers with consumable data
processing capabilities to ease his work. For
example, amount of carts in a designated area.

Login / access control IDM Enable login for personalization, access
control integrated in the platform.

Real time notifications ServioTicy -
Pub/Sub
mechanisms

Notifications between service objects (DPPs)
and a running application

Service Objects
Management dashboard

glue.things -
dashboard

Creation of shopping carts description from
the interface.

A central point of management.

Discovery of existing
capabilities (SOs,
applications)

iServe using glue.thing’s search node

Integration of existing
capabilities

glue.thngs -
composer

Creation of applications and workflows.

Creation of reusable
services (scanthng/evt
api/like/dislike products)

glue.thngs -
composer

Applications re-used within a workflow

Cloud deployment Deployment
infrastructure

All entities deployed within the cloud
infrastructure

Flow Control Usage Lock
Policies and
Dynamic
Enforcement

User can assign fine-grained policies to
individual data items. In this way the
distribution of data can be controlled on the
data management as well as application layer.

�
����������

Story telling Action What is shown

In the store,

� Every single shopping cart/basket is
associated to an active TAG. By doing
this, it is possible to localize in real-
time where each and every asset is in
the store.

Move inside the store
with the shopping
carts/baskets

Employees move
around the store as
well.

Pictures of the store
+ video.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&��
���(� �� �

� Staff members are wearing a
smartwatch and carry a smartphone.
In addition an active TAG is
localising them in real-time inside the
store and used to receive real-time
notifications on the operations of the
store.

Both the tags associated with the shopping
cart/basket and the smart watches are
represented by a Service Object that captures
the object information and receives real-time
updates of the location. Further, the objects
can also be actuated, as an example for
sending notifications.

The scenario is deployed in the supermarket
SAIT in Trento.

Use case 1: Real-time view Action What is shown

Show real-time view of the store manager
application. In this view, it is possible to
monitor the mobility of customers in real-
time. This dashboard can be used by the store
manager to obtain real-time information on the
store operations and on customers’ behavior.

Move inside the store
with the shopping
carts/baskets.

Web application: we
show the real-time
web view

Use case 2: Queue monitoring Action What is shown

The application detects queues forming at the
checkout counter and notifies this to all
applications registered to it.

Baskets/carts moving
all together at the
checkout counter.

Web application: we
show a red icon
when a queue is
forming.

Use case 3: Checkout counter
opening/closing

Action What is shown

When the forming of a queue is detected the
application notifies this to store staff
members. The notification is received on their
smart watch. In particular, only the staff
member that is closest to the checkout counter
to be opened is notified.

It is important to notice that the location of
staff members is displayed or not on the web
application based on the security / privacy
policy applied.

Baskets/carts moving
all together at the
checkout counter.

When a new checkout
counter is opened,
customers redistribute
to the checkout
counters which are
opened.

Store web
application: user
moving in the store.

Smart watch: a
notification is being
sent to the smart-
watch of the staff
closest to the
checkout.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&��
7��(� �� �

Lights: when a new
checkout counter is
being opened, the
light switches to
green.

�

:

Figure 14: Checkout counters models and coordinates

3.1.1 Web Dashboard:
� The dashboard presents a real-time view of the store status. This includes:

o all carts moving in the store
o all staff members moving in the store
o status of lights which are switched on/off
o a flag that turns green when a queue is detected

4 Integrated platform Installation & configuration

Deployed in the Barcelona Supercomputing Center (BSC) server farm on 3 servers for hosting
the IoT PaaS platform:

� cloud01 (147.83.30.133): 4x2GHz 16GB RAM

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&���2��(� �� �

� abiell (147.83.42.190): 2x3.2GHz 6GB RAM

� cfdea.pc.ac.upc.edu (147.83.42.216): 16x2.4GHz, 130GB(!) RAM �

The OS of all 3 is Ubuntu Lucid 10.04.4 LTS 64bit. �

cloud01 functions as the main Cloud Foundry server and hosts all Cloud Foundry components,
while abiell and cfdea function as DEA servers (run Cloud Foundry applications) and also host
the backend services.

ServioTicy is deployed in a separate server farm of 4 servers also located at the Barcelona
Supercomputing Center (BSC), plus additionally 2 VMs for auxiliary services such as domain
rewriting and load balancing. The 4 servers devoted to ServioTicy are all identical and have the
following specs:

� minerva-1001..1004: 12x2.0Ghz, 192GB RAM, 6TB HDD, 1.6TB SSD (6 SSDs per
node configured in RAID-0 to maximize I/O bandwidth), running Ubuntu 12.04LTS.

All nodes in the BSC deployment are connected through a non-blocking 1GbE switching fabric
composed of 2xCisco Catalyst 3750X stacked for single logical management.�

In terms of software, a service broker is installed on both abiell and cloud01 and consists of two
parts:�

o The backend is a java app with an embedded DerbyDB configured with a
simple XML-file. The service catalogue is built dynamically by reading the
YAML files given by the service providers.

o The frontend is a Tomcat servlet hosted on CF itself and is given a user-
provided-service in order to know the RMI URL of the backend.

� Services:

o The communication infrastructure (CSB) runs embedded in a web application
with 3 instances (Cloud Foundry runs each instance on a different server for
redundancy). Each instance performs auto-discovery of its peer nodes via http
requests to the we application's service endpoint, and gossips the known
information to its peer nodes in order to establish a shared view of external IP
addresses and routable ports of all instances, and only then the communication
infrastructure is spawned with the information of the peer nodes.

o DerbyDB-provisioned: A provision creates a private DerbyDB instance; a bind
creates a database within the instance. The instances are managed by the service
broker (supported out of the box, with a “broker-managed=true” attribute).
When the service broker backend starts up, it also starts the derbyDB instances
if they’re down.

o iServe: Binding to the service simply returns the iServe’s servlet URL.
The iServe instance runs as a Tomcat servlet on cloud01.

o MySQL-shared: Binding to the instance creates a database and a new user.
Unbinding deletes the user and the database from the DB. The service is
available both in cloud01 and in abiell.

o ServioTicy: described in sub-section 2.6.1�

o Redis 2.8.2 – hosted on cloud01, and is used by iServe for caching discovery
related entities and compositions.�

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"�#	$%$
�������������������&�������'��������������� ��&������(� �� �

o MongoDB – Used by the Security Server, installed on abiell and the bind
returns simply the MongoDB URI.�

�

