Collaborative Open Market to Place
Obijects at your Service

D6.4.2
Marketplace integration — Final version

Project Acronym

Project Title

Project Number

Work Package

Lead Beneficiary

Editor

Reviewer

Reviewer

Dissemination Level
Contractual Delivery Date

Actual Delivery Date

Version

COMPOSE

Collaborative Open Market to Place Objects at y®envice
317862

WP6 Open marketplace

IBM

Benny Mandler IBM
Fabio Antonelli CN
Alex Futasz FOKUS
PU

31/10/2015

31/10/2015

V1.0

" # $%9$ &

Abstract

The final version of the COMPOSE integrated platfas described. The integrated platform
took technological pieces developed in all the méedl WPs and connected them into a
cohesive solution that can benefit external staldgrs. The COMPOSE integrated platform
offers on the one hand developers the opportuaigasily create applications which are based
on loT smart devices. On the other hand it takee o&data ingestion and making the data
accessible to applications. In the middle it takare of all deployment, hosting, and
connections needed in an 10T cloud based envirohmen

" # $%$ & & (

Document History

Version Date Comments

V0.1 01/07/2015 Initial skeleton version

V0.2 06/10/2015 First draft

V0.3 10/10/2015 Add demo details

V0.4 20/10/2015 Incorporate contribution from RETE
V0.5 27/10/2015 Incorporate contribution from PASSA
V0.6 28/10/2015 Incorporate contribution from BSBOKUS
V1.0 31/10/2015 Finalize and integrate all contfiduus

" # $%0$

Table of Contents

I R R A R
B+ SE5SESSSESSSSESSEIEESSSIESEEESESSSEESS
(& SESSTESSTSEISTEESTSIESSTISSIESSSISISTES

(. SESTESSITESITHSSTSSEESIIETSSEESHS
) * SESSTEISTIESSTEISTSSSSSHSEIIEETSIFSIESSSS

PHSSSEES

[0! $5$$STISSTI$STESSTHHHHPHERIHEERPHELSSSESS
+&1 P 0 SEEREERRRREAREARRRRE AR AR AR
$ 10 EREEEBBEUE R AR AR R AR AR AR NAN AR
$$ 10 RIS PEEISTIISTEISSEIST TS PSEPS TIPS PSTSSSEH
$ A 101 * $3555PTES SIS S HHHHHHIHHHB SIS PSSES $$3$
$$ a0 RERCEAERRAARARRUERA S RN AR AR AR AR,
$ # * 0 (* &* $EISEISEES PSP STEIFSTIISTEISS TS SESSST LSS ST SSSBS
$$ # * 0 (* &* * BRI A
$% $EEFSTEI TS SIS NI S5 $$$ -
$%$ /0 &* $$$$$S$TESSI SIS THHHEHTHIETS ST SPF ISP PSSP SIS PSSP S B
$%$ # SRR AR AR AR AR R AR AR AR
$%$ 4! & PSS SSISSSSHES SSRRUEARUERRRRRR AR AR RS
$%$% SEBEEATRAARRRRRE AR AR AR S ARARARARARARAR AR AR AR AAARARAARAAANAN
$%$- 5 &, $EIISEEISSEEISSSHTHHHETHEHTEHHNEDESSSTISSEESSSTESSTEEPSESSSTEISSES
$%$ I(* SRR UGB AR AR ARSI
$%$ #
$%$ # * 6
$%S$7 (* 0 (4! 3 EAEEBERUBRAAIRRARAR AR AR AR,
" # $%$ & & % (

$- # $PEEHISTEISS S SSSHPHBHEREPBEP ST SSESS

FA
$-$ 1 0 ¥ SPPTTTEEBS TIIIFSSTTTISSSTEEIISSSEEEEPSSPLTEEISS ST
$ # &F $IIISTTTTIISSSSSTHHHHIIREEET S SS LTS ST TS PS TS PS S EEBSSTEES
$$ d1# &* ¥ PPEETIEISEE SEPTIIFSSTIIFSSTEIFSSSTTIIFSSSTSS$SS S
81 &0* OTSIIISSSTEIISSSHHEHPB LTI SSSSTEEI$SSSS

$3$5$
$ # 0 63PFPPFPPFPPFPPS PP TIPS P PSSP

$$ 8 # 1 03333TTEITTTEESTEISSEEISEEISSTEESTEEESTESSEEESSEESSLEESSLESIPLEISSEHSS
% [& 0 (*/ 9 (& 335353 SSSSSSSSESTETTT LSS SEBSSSSSSSSSSES:

List of Figures

& 3 (** 33P5888$ ERRLEERLEEBERE BB AR AR AR R AR R ANSERRARA,
& 3 10! * * FETETIIISTTEEIS SIS STEIESSTEE$$S $$$5S

& 3/ (10 * ~* ERREREEUERBEREERIERRE A BERAR R REARR SRR
& %3# * * ¥ SE3PSSS ERREEERLEERREE BRI AR A AR RAA RS SRR,

& -3 # 0 * $ITIISLTEEES $ITSSLTLIISSSTEI$SSSS

BN
& 3# &* 0 * $IIITTTTEEIIPS FIFSSTEIISSSTEIISSSTEESSSSEEEES PSS SSSTEE$S
& 3,* $SETIPFSSTT S THHHB IS S ST S ST

& 31 & PEETTTSSE STISSSTEEIESSSTE$$SS

& 73* 81 PEEFSTISSTES BT SSTEISTESSSTEISSES

& 23# & PEITTTISTEISSHHHBH ST SSESSSTEISSES

& 3:10 SIS SSSEE $ESSSSSSLTTTTTTESSS

& 3; (1 $ETEISTTHISTE $FSSTEESTEEISTESSSTSS

& 3% 0* 6 (6IEIIITTTTEIIISSTEEIESSTTEIESSTTEI$SSS

& %31 ! ! *0 0 O EEERRREREER AR R AR BRI,

" # $%$ & & - (

List of Tables

3) F PEEEETTISSSSSSSS S

"# $%3$ & & (

Acronyms

Table 1: Acronyms table

Acronym Meaning

API Application Programming Interface

CF Cloud Foundry

COMPOSE Collaborative Open Market to Place Objati®ur Service
DPP Data processing Pipeline

GUI Graphical User Interface

IDM Identity Management

loT Internet of Things

JSON Java Script Object Notation

PaaS Platform as a Service

PDP Policy Decision Point

PIP Policy Information Point

REST Representational State Transfer

SDK Software Development Kit

SO Service Object

SuU Sensor Update

SPARQL SPARQL Protocol And RDF Query Language
UAA User Account and Authentication

" # $%0$

1 Introduction

This document accompanies the demonstration dirthkeintegrated COMPOSE platform. In
this version all of the capabilities envisionedhiitthe platform are in place. Contributions
from all the technical WPs have made it into thession of the platform, thus providing the full
spectrum of COMPOSE platform capabilities.

The main purpose of this document is to accomphaydchnical demonstration and provide
the necessary background information concerningpomnts and their interactions. It is not
intended to be a full-fledged design document. Mtgiled information is provided in the
final version of the COMPOSE architecture docun{&xit.2.2), and individual components are
detailed in their own deliverables. The most refeietailed deliverable is D4.1.1 — “Highly
scalable runtime environment for the COMPOSE edesys

2 High level picture — Main components and
interactions

Figure 1 presents an overall view of the COMPOSeggrated platform. The figure shows the
main components which are a part of the platfomd, the main interactions between the
various components. At its core the COMPOSE platfira customization of an openly
available Paa$ infrastructure (Cloud Foungmnaking it more suitable as a platform to serve
the IoT domain. Thus, as can be seen in the figl@VIPOSE is a cloud platform, with specific
capabilities that make it easier to develop andayelpT based applications. On the left hand
side of the figure are the COMPOSE cloud serviadsle on the right hand side are the
COMPOSE components which are deployed as cloudcapiphs.

Most of the components operate within the cloudrenwnent; the main exception being the
developers’ portal, which is a crucial COMPOSE comgnt that operates outside the cloud, but
interacts tightly with it. It serves as the conn@tipoint between external developers and the
COMPOSE platform. It mediates between the platfand the external world and makes it
easier to consume COMPOSE offered capabilitiess&@ loapabilities include assisted
application development, through security, andhalway to automated application deployment
into the cloud.

The developers’ portal is the only access poirt the COMPOSE platform for end-users and
developers as one. It integrates various fronteamdponents for 0T application development
as well as back-end components which enable the BOSE core features. The interworking
between all components forms the integrated COMPQI&#orm. &! Figure 1 shows the
core components of the COMPOSE back-end. Data ffooms bottom-up through the data
management layer and is made available to apmgitafproduced by the developers’ portal in a
variety of manners. Integrated components suctatsrdanagement, service discovery,
security and cloud deployment are highlighted i fiyure. The developers’ portal via the GUI
provides direct access to particular features etidick-end components.

1 3<< 10(!10 $ &< 0=$1*

" # $%$ & & (

COMPOSE platform components are deployed withirctbad run-time either as cloud
applications or cloud services, depending on thairements and mode of interaction with each
such component.

The COMPOSE controller, which is a central pointafnmunication between the cloud
platform and the developers’ portal is deployed akud application, thus making it easily
accessible to the external world on the one haritkwiternally being able to bind to the
COMPOSE services it needs to interact with fopitgper operation.

Security components, such as the Identity Manageraemalso deployed as cloud applications,
enabling the COMPOSE controller to use it, as aslexternal entities, such as the developers”
portal.

The discovery component is divided into a front-and a back-end. The front-end is a light-
weight cloud application, enabling external entitie interact with it, while the bulk of the work
is performed by a back-end, which is deployed @sad service. Such a deployment enables
the back-end to be state-full as it needs to be.

COMPOSE provided
COMPOSE Developer }—){ Developer‘s: portal k—{ Provider | .

Cloud

LY

Y
r -| COMPOSE Controller |7. # Life Cycle ‘ Security
I
| Cloud Controller |— r=-
| |

I
: ! l— - == 9‘| Identity Manager # UAA |
I
I

Discovery Front-End

Run-time

Discovery Back-End

Communication /
Monitoring

I

= = =2 Orchestration Engine

I
1
I
1
I
I
|
I
1
I
I
1
L

v

Cloud Services € - -

SRR Fp———
1
b -

Data Management ([= == = COMPOSE
Cloud

y

Smart Objects External Applications

al

Figure 1: Main COMPOSE platform components

The data management is deployed as a cloud seeviabling it to be state-full, and enables
only internal COMPOSE cloud applications to bindttaia its HTTP based API. The
communication and monitoring infrastructure is dgpl also as a cloud service, for the same
reasons, but it enables thin clients to run asitiinvcloud applications, and bind to the
communication servers at the back-end.

" # $%$ & & 7 (

2.1 The developers portal

The developers’ portal is a multi-tenant one stogpsfor developers who wish to create 10T
based applications in COMPOSE. This portal sergdbaentry point for external users of the
platform, whether the users are application devagmsmart objects providers, or end-users
who consume COMPOSE applications. The developersapprovides a user-friendly GUI
based interaction mode which helps developersethatapplication of their dreams.

The developers’ portal contains three parts thategthe developers through the process of
application creation. The smart objects managesésl to create and manage service objects,
which are the COMPOSE internal digital counter-paftreal world physical smart objects. It
provides features for smart object virtualizatiorgnagement and policies for authorization and
authentication. Once a service object is succdgsfidated end-users are directed to the smart
object composer for creating applications of tlebivice, using data coming from the smart
objects, or directing commands to these smart tdhjébe smart object composer integrates
capabilities for applications’ discovery, secuiiyd deployment. Finally, the automations
component allows for sharing of created compositiwith other registered users. Developers
can choose to share their creations publicly whiehpersisted in storage. These persisted
automations are available for other users for iftiiion and deployment.

At its back-end the developers’ portal interactgwtiie cloud infrastructure in order to deploy,
run, and manage created applications. The mairaittiens of the developers’ portal are with:

1. Security — to identify and authenticate users; ioljpgoper tokens for smart object
interaction, and access to applications; ideniifgli@ations with security flaws and
recommend corrections.

2. Cloud deployment — to make the actual deploymeth®treated application.

3. Service discovery — to locate existing buildingdi® that developers can use for
creating a new application.

4. Service recommendation — present the developehsratbmmendations concerning
the choice between different services that canesire same functionality.

5. Service composition — provide a front-end for thsisted composition services to help
guide the developer to the COMPOSE applicationwhiatulfil his requirements.

6. SDKs — to integrate and access various Smart Gbjemn the developer portal.

7. Service composition — to connect existing buildiagcks to workflow applications and
make them accessible via RESTful APIs.

8. Data management (ServioTicy) for registering serdbjects and data processing
pipes, and displaying their data streams.

9. Reputation: present to the developers the reputatiore associated to COMPOSE
entities of interest to him.

As of October the final prototype of the developpstal has about 320 registered users. Each
month the portal has about 340 page views. Théivevisiting countries are the United States
of America, Germany, Italy, United Kingdom and ladn that order.

" # $%$ & & 2 (

2.1.1 The developers portal environment

Ubuntu 14.04.2 LTS operating system

Developer portal implemented as Node.js v0.10.38iegtion

Apps that are deployed to Cloud Foundry use No&e0j40.33

The Smart Object Manager uses Angular.js v1.2 déwork

The Smart Object Composer component based on N&fewR.10.7-git
Uses MongoDB v2.6.3 for user management

Service Objects API running in BSC servicethtip://api.servioticy.com/

Lifecycle Management API (LCM) running in Cloud Falry
(http://docs.composelifecycle.apiary)io/

iServe API running in Cloud Foundriitfp://compose.bsc.es:9082/iserve/dgcs/

Identity Management API (IDM) running in Cloud Falrg
(http://docs.composeidmusers.apiary)io/

2.2 The cloud run-time

The cloud run-time hosts COMPOSE entities and maketications available to the external
end-users. The COMPOSE platform cloud run-time ist&1f a customized version of the
openly available Cloud Foundry PaaS. The cloudtime-hosts COMPOSE application as well
as the front-end of COMPOSE specific infrastrucesevices such as the discovery service. In
addition the run-time provides binding mechanisorsGOMPOSE applications to connect to
the infrastructure services they require.

| Developers portal 1

Figure 2: Cloud run-time components

" # $%$ & & (

The main interactions of this component are with:

1.

Deployment (COMPOSE controller) — All COMPOSE apations are deployed as
Cloud Foundry (CF) applications using a predefiNedie-RED template with Node.js
runtime. The life cycle management component, wischpart of the deployment
component, absorbs its information from the COMP@S8Etime.

Service discovery — operates as a part of the @dowdonment. This component’s
back-end runs as a COMPOSE service which COMPO§$kcations can bind to.
Internally it uses services offered by the cloud-time, such as a database.

Data Management — operates as a part of the cloticbament. This component’s
back-end runs as a COMPOSE service which COMPOS$Hkcations can bind to.

Security — COMPOSE security interacts with cloucusity mechanisms provided by
the UAA which is part of the CF ecosystem, and ajiific security capabilities. The
users that are created in COMPOSE are essentially Wsers, so each major action
like creating or deleting COMPOSE applicationsuthanticated by CF itself.

Scalable communication infrastructure which is ysedong other capabilities, for
connecting between the service objects and the COBHPapplications provides
applications with an easy way of sharing data ula/gub semantics, and is also built
from the ground-up with auto-recovery and scalgbdonsiderations.

Monitoring infrastructure which collects information the state of service objects,
COMPOSE applications, COMPOSE infrastructure, daddcresources. The
monitoring infrastructure taps into CF's native sagg passing mechanism (the NATS
service) in order to minimize latency and incorrdessifications (false
positive/negative).

2.2.1 The run-time environment:

The COMPOSE cloud is currently comprised of thvisehines installed with Ubuntu
10.04.4 LTS :

cloud01: runs a Cloud Foundry environment (buil8,liistalled via nise bosh)

abiell: functions as an additional DEA server ftoe CF environment, and also hosts
additional services.

Cfdea: functions as the main DEA server as it IB88GB of RAM.

External services run on cloud01 and abiell, amdratroduced to CF apps using service
brokers which their backend runs locally and tifreint-end runs as CF apps.

Compose Communication Bus (CSB) runs as a CF atiglic— 3 instances total,
each instance embeds a CSB node inside a web ajpplic- which is used for
auto-discovery of all peer nodes via http requiestsder to establish a shared view
of external IP addresses and routable ports afistthnces, which in turn is
published to CSB client applications by having thagumery any of the 3 instances'
web application.

MySQL-shared: Binding to the instance creates aliate and a new user.
Unbinding deletes the user and the database frerDEh The service is available
both in cloud01 and in abiell (essentially expostrdjfferent services).

iServe: The iServe instance runs as a Tomcat semwleloudO1.

" # $%$ & & (

Redis 2.8.2 — hosted on cloud01, and is used biy@Ser caching discovery related
entities and compositions.

MongoDB — Used by the Security Server, installecbiell and the bind returns
simply the MongoDB URI.

Cloud Foundry instance managed with cf-cli (go exalle)
Service Objects API running in BSC serviced at:htpi.servioticy.com/

The Identity Management service (sec. 2.4.1) rgrs @F app and stores data inside the
MySQL service which it is bound to.

The Security Server is bound to the MongoDB sergitg uses it to store security policies.
The COMPOSE controller consists of 2 independerispa

The Life Cycle Manager (LCM) — a Node.js applicatitbat is deployed as a CF app
and uses the MySQL service for persistent storlégéunctions are tracking
registration and deployment of all COMPOSE entitietServe and in ServioTicy.

The Mediator — a java web servlet that has no oégersistence, and simply deploys
COMPOSE applications to CF on behalf of COMPOSEwu@arough the LCM). It
receives workflows (JSON objects describing thdiagfion logic designed in the
Developers’ Portal), prepares a Node-RED runtinneifem and deploys them to CF by
implementing the Cloud Controller client API.

2.3 Deployment and life cycle management

The deployment component is in charge of takingaihyi@ications designed within the
developers portal and transforming them into a CQIEE entity which can be deployed,
hosted, and managed within ServioTicy or the COMB@$%-based cloud platform and added
services. In addition, this component tracks angegus the lifecycle management of
COMPOSE applications. These COMPOSE entities gdarthe lifecycle manager which
provides a check for security and policy usinglib®l and PDP components, and the registry
in the iServe catalogue.

% glue.

d.Serve

loT Q

CLOUD

FOUNDRY

Figure 3: Interactions of the deployment component

The deployment component works internally with alimr component which is in charge of
the actual deployment to the cloud via the cloudtidler. The mediator serves also as an
orchestration engine which takes care of run-tispeats of COMPOSE workflows being

" # $%$ & & (

deployed to the cloud platform. In addition, th@ldgment component interacts internally with
ServioTicy to deploy Service Object and Data PreicgsPipes.

A COMPOSE entity can be one of the following types:

Service Object

Data Processing Pipe
COMPOSE application
COMPOSE workflow

The main interactions of this component are with:

1.

Security — The deployment component interacts Widtfl for authentication and
authorization of the COMPOSE entities. There ase ather interactions to verify that
the user can deploy, start, stop or delete anyentit

Cloud run-time — For the actual deployment of tppli@ation within the COMPOSE
cloud run-time.

Data Management — For the creation of service thpaed data processing pipe.
Service discovery — For registering entities.

2.3.1 Deployment and life cycle management environm ent

The deployment and life cycle management is composdifferent CF services and CF
applications running in BSC. It further interactishithe cloud controller in order to deploy,
monitor, and manage COMPOSE applications.

R/W

COMPOSE SDK

A

Life cycle
management

API (HTTP,
Websocket)

Service Life Cycle

—» IDM
Check Service
Repository [*
(MysQL) Policy
Check P :

>—\
T R/W Prototype

Security R/O Notification

—®| Registry iServe

Mediator

I:l Other COMPOSE components

Deployment

ServloTicy

I:l Deployment and Life Cycle management component

Figure 4: Deployment component environment

Life cycle management: Developed using node.j9X(G3).

0 The main modules that LCM depends on are asyncgedstatic, express,
log4js, node-uuid, sequelize and urllib.

" # $%$ & & % (

0 There is an API to interact with this component
(docs.composelifecycle.apiary.io)
0 LCM interacts directly with these other COMPOSE @oments
IDM : Identity management
Mediator: to deploy to Cloud Foundry
iServe: to register entities
PDP: to check policy
ServioTicy: to deploy service objects and data gssing pipes.
0 MySQL - Used by the life cycle management to pedasa relevant for the
LCM itself. It is used also as a file repository.
Prototype Service Life Cycle: is built using nod€(.10.33).

0 The main modules that the LCM Prototype dependarerexpress, jade, stylus,
urllib,
0 It's a web application used to test the LCM API.
0 The LCM Prototype interacts directly with theseestEOMPOSE Components
LCM.
IDM.

2.4 Security

2.4.1 Identity Management

Identity management deals with authentication d¢ities, and administration of their identity
information. ldentity Management is a prerequisiterder to define security policies, since an
entity, and its entity information must be referetcso the policy enforcement framework can
choose the right policy for a given entity.

Identity Management is deployed as a cloud fourghplication, which can be used not only by
COMPOSE components (i.e. developed by the consoytibut also by COMPOSE application
developers who may want to use identity managemeeatSingle Sign On solution for
COMPOSE.

To account for scalability, identity informationrfService Objects is replicated in the data
management layer, so it can be accessed by theRoliey Decision Point locally. To replicate
the identity management information effectivelywetn identity management and the data
management layer, a private APl exposed by therdateagement layer is used. Furthermore,
to deal with the same problem in the applicatiantirae, identity management uses the CSB
messaging system defined and implemented in WBértd real-time updates to the local
Policy Decision Points running in the applicatiamtime too.

This component interacts with:

1. Cloud-runtime: identity management encapsulatepitbeess of requesting a token for
users from the cloud User Account and Authenticasierver. It registers a user in the
proper Cloud Foundry space with the Cloud Contratieenable him/her to push
COMPOSE applications to the cloud.

" # $%$ & & - (

2. Data Management: The data management componestamgservice objects once they
are created; furthermore, Identity Management &rigd to authenticate external
devices providing data to the Data Management layer

3. Developers Portal: The developers’ portal authetdi users with identity
management.

4. Deployment and life cycle management: This compbregisters new COMPOSE
applications in identity management.

-$ Reputation manager: identity management authéetiassers providing feedback for
COMPOSE entities.

2.4.2 Data Provenance

The integrated data provenance module collectsggétformation about the heritage of data
items in the data management layer (WP2) and al#wei application layer. This information is
retrieved by modifications to the correspondingoestisn environment. In case of the data
management layer this execution environment is difred Rhino interpreter that analyses the
user-defined source code of service-objects (S@pata processing pipelines. In case of the
application layer the execution environment is aifired Node-RED instance.

The provenance data representation is in JSON foand is part of the security meta-data. It
has a unified format throughout the application dath management layer. The provenance
data for sensor updates is stored together withd¢heal data item in the Couch Base database
of the data management layer. To ensure scalaltilgypossible to activate or deactivate the
provenance collection for a particular SOs or DAP& provenance data in the application
layer flows during runtime with the actual messagegle Node-RED.

The data provenance module interacts with the mat@agement layer during the generation of
new data item (SU). This can be the case when adagavitem is pushed to the platform as well
as when data items are dispatched in the data reareaq layer. The integrated provenance
module has also the capabilities to transmit andyenprovenance data between both layers.
This is necessary if a sensor update is read itis&lapplication layer, in this case the
provenance data of the SU is merged with the cumevenance data of the message in the
application layer.

2.4.3 Reputation Manager

The reputation manager collects information from Erata Management Layer, and from the
application runtime, in order to hold informatidnoait popularity and activity of Service
Objects, Data Processing Pipes, applications amkfiwws. Furthermore, it provides
aggregated reputation information to the Develdgeostal, and also to the service discovery.
The latter allows users to define trust preferendaish include reputation values from
COMPOSE entities. Additionally, the reputation A®hccessible from COMPOSE
applications, in case developers want to buildiappbns leveraging its functionality.

This component interacts with:

1. Application runtime local PDP: to collect event®wing interaction between
applications. This is used for popularity.

2. Data Management: The data management componeribgisevents showing
whenever a sensor update was delivered successfuliyled to do so, in Service

" # $%$ & & (

Objects and Data Processing Pipes. This informagitimen fed into the reputation
manager, in order to calculate popularity and #@gtscores for entities within the data
management layer.

3. Developers’ Portal: The developers portal colléeesiback information, and at the
same time displays reputation information to users

4. Service Discovery: The API from the reputation ngerds used by the trust component
inside the service discovery to influence the rtsssthown to the user by considering the
reputation values of COMPOSE application, ServibgeCts, etc.

5. Identity Management: In order to ensure that onlhanticated users can provide
feedback, the reputation APl uses identity managemeeverify and obtain identity
information about the user providing feedback.

2.4.4 Contract Store

The contract store is used to persistently stoderatrieve contracts. This includes the contracts
generated by the static analysis as well as degelmgntracts. Developer contracts are able to
refine the automatically generated contracts withtielp of additional information provided by
the developers of the corresponding entity.

Contracts for all kind of entities can be stored egtrieved by the contract store, this includes
among others SOs , DPPs, Node-RED nodes, COMPOSEEatpns. Contracts are mainly
generated by the static information flow analyperformed with the modified TAJS. This
process is a computation intensive process andftirerthis process should not be performed
several times for the same entity, highlightingithportance of the contract store.

The contracts for entities are mainly used in taisworkflow analysis which analyses also
the information flow between entities. This anadyisi performed during the verification step of
COMPOSE-applications and COMPOSE-workflows. Thiscgss triggers also the contract
generation of single entities that do not yet hawentract.

This verification step itself is integrated intetlife cycle management component and is
triggered during deployment. It is also possiblérigger the verification directly in the user
interface.

In order to improve the scalability of the contrsttre it is possible to have a local instance of
the contract store that stores the informatiorthiee particular instance relevant contracts. The
local instances are synchronised with the centmalract store with the help of the CSB
messaging system. The central contract store ipyegin Cloud foundry and the interaction
with it is possible via a REST API. Local instanees directly included in the corresponding
environment.

2.4.5 Usage Locks

The policy language Usage Locks, specifically depet for this project, is used in all aspects
related to policy information, evaluation, and demn as well as for contract and conflict
description and definition. Appropriate procesgimgnitives and user interfaces have been
developed and integrated.

" # $%$ & & (

2.4.6 Policy Information Point

The policy information point (PIP) is the componased to persistently store and retrieve
policies for all kind of entities. There are loea well as a central PIP, to provide fast access to
policies for a high number of requests. The intégoacto the central PIP, which is deployed in
Cloud foundry is realised via a REST API. The geldn the local PIPs can be directly
accessed by its corresponding component, into whigtocal PIP was integrated. Local PIPs
are automatically synchronised with the central iRlBrder to propagate policy changes with
the help of the CSB messaging system.

This component interacts with:

1. Application runtime: In the application runtime tR& provides the required
policies for the enforcement.

2. Developers Portal: The developers portal provitledrterface for developers to
specify policies for their entities. These policees then stored in the PIP.

3. Service Discovery: The filter implemented in iSetvaetrieve only entities that are
accessible by the person that sends the quernths&dP to get the corresponding
policies.

%3$ Life cycle: During all steps of the life cycle dfitéties the PIP provides the required
policies for the enforcement.

2.4.7 Policy Decision Point

The policy decision point (PDP) evaluates policas detects if a certain flow or access is
allowed or not. This evaluation has to be performmeseveral places and components to ensure
that information is only accessible by authorizatities.

To provide a scalable policy evaluation, local amstes of the PDP are used. These local
instances are included in several COMPOSE infrefifra components.

The PDP is integrated into:

1. Data management layer: Inside the data managemrtthe PDP is necessary to
support efficient policy evaluation during enforaamhof flows, during dispatching,
when interacting with data via its API, and durargation of subscriptions using
MQTT or CSB.

2. Application layer: The application layer consists modified runtime of Node-RED.
During deployment of a flow, the access between gatcessing pipelines, COMPOSE
applications, and users to data or applicatiowsimgrolled using local policy decision
points.

3. Life cycle management: Before the deployment asd béfore the state changes of a
deployed entity, policy evaluation takes place.

4. Discovery: A filter is integrated into iServe tdtdir query results based on the policies
together with the user sending the query.

5. Policy information point: Policy evaluation is recgd for access control to the PIP.

" # $%$ & & (

2.4.8 Dynamic Flow Control

The policy decisions mentioned in the previousieadtirectly trigger policy enforcement.
Apart from the integration of the appropriate pplémforcement points, the COMPOSE runtime
also deploys dynamic flow control. For this purpbseie-RED has been adjusted as follows:

1. During message exchange inside Node-RED, poligyinétion about each message is
maintained and communicated to the next node &xbeuted. Thus, flow control can
be enforced for each single message and its réspdieids.

2. Each message also carries further state informggoerated by security services, e.g.
about the user using an application. Messagesvadsatain the state of security locks
which have been opened or closed by security ssyeg. whether a user was
authenticated or not.

$ In order to support the conservative propagatiodadé-centric security policies the
execution of the pre-deployed node types in Nod®REes a contract. The contract
specifies how messages are processed and howtthegestheir security policies. For
the execution of function nodes which can furthexosite user-defined JavaScript, a
modified version of JSFlow is deployed which penfierdynamic policy propagation.

2.4.9 Static Enforcement and Conflict Resolution

In order to simplify the development of secure andessible applications, we integrated a static
analysis component in the marketplace. It processesrkflow generated in glue.things and
verifies the correctness of access between nodketharcompliance of the flows of information
between nodes and COMPOSE applications. An ap@tepuser interface has been integrated
into glue.things. The latter also processes thalteesf this analysis. An extra security tab in the
sideboard of Node-RED allows the visualisation afiaus error types.

Further, the static analysis component is suppdiyea reconfiguration component. It processes
the errors found by the static enforcement compbaed tries to solve the conflicts therein. A
rated set of solutions is communicated to gluegbivhich can display the required changes to
a workflow to make it compliant with its securitglizies. The user can further apply a solution
to a workflow to fix it.

2.5 Service Discovery

With the vast amount of applications and servigeab anticipated in a platform such a
COMPOSE the chore of a developer would be made reaster if the developer could locate
existing building blocks that he can re-use to terésss own masterpiece. For this reason
COMPOSE contains a service discovery componenthwindds semantically enhanced service
descriptions making it easier to discover servizzsed on various criteria.

" # $%$ & & 7 (

CF Services ‘ ‘ CF Apps

. RIO Discovery
iServe hd iy Front-End
/
RW COMPOSE
Controller

replication replication

Figure 5: Service Discovery deployment

Each newly registered service object in the platfgets registered with the service discovery
component as a part of its registration process.seme holds for each new application created
and deployed in the platform. A developer can geseantic queries from the developers”
portal to look for building blocks he can use fareawly designed application. Once found, such
an entity immediately becomes an operational bleitkin the application being designed.

2.5.1 The service discovery environment

At the back-end a Tomcat7 servlet hosts iServe@SBIPOSE platform service. iServe in turn
is connected to an application-layer load-balanteming as a jetty application, that redirects
SPARQL queries to a PaxDB cluster.

The PaxDB cluster consists of 3 PaxDB nodes (eachimg on a different physical server) with
a single master which receives write requests,endilicluster nodes can service read requests
(which are randomly distributed among all nodes$)e Taster and all nodes are periodically
probed by the application-layer load balancer,ifachode is considered faulty, it won't receive
requests until it successfully responds to a priflibe master fails, a new master is elected.

In order to respond to free text search queries) PaxDB instance uses a Solr cluster (3 nodes
in total, 1 for each PaxDB instance hosted in #raesphysical server to maximise redundancy
and minimize network round-trips).

2.6 Data Management

The data management service forms an ingestion Velyieh takes care of the bi-directional
communication with the external smart objects.ddition this component takes care of storing
the data flowing into the platform from the smdbfexts, as well as providing real-time data
processing, manipulation, and notification capébsi This layer consists of a historical data
repository in addition to a programmable real-tstrieams processing unit. In addition a search
service over the data is provided as well. Thediasernal representation of a smart object is
called a COMPOSE service object, whose endpoimhsega JSON and REST based API for
creating, updating, and obtaining date from sergigjects.

" # $%$ & & 2 (

2.6.1 The Data Management environment

The data management components are deployed aserdé€e that is exposed and made
available to CF applications. The entry point fér &pplications is either the HTTP REST API
or the MQTT/STOMP bridge that connects the dataagament environment with the external
entities using TCP or WebSockets. The data manageseevice is composed of several
components: CouchBase for the registry and datsiepy; ElasticSearch to index and provide
guerying mechanisms on the repository; Apache ST@RRIhe event processing and
dispatching engine; Jetty and Jersey for the p@piccinternal REST API; Apache Apollo as
the multi-protocol message broker; and several NS8dmmponents to bridge the REST API
with external MQTT/STOMP entities. The data managenenvironment interacts with the
security component (Identity Management) to enféathentication and Authorization. And it
provides capabilities to the COMPOSE platform fatadprovenance and reputation through the

STORM topology.

CF Apps | | CF Services

> Async upd_ates | —
and actuations

: b

Applications

Registry
Repository

g
AV [eussiu|

— API (HTTP, sTOMP, MQTT)

Data Flow

Queries

Figure 6: Data Management deployment

3 What is being demonstrated

The cover story is an application (COMPOSE workjldhat takes place in a supermarket; the
same supermarket that is used for the COMPOSE seiait pilot. The application will identify
when a long queue is formed in front of one ofcash registers and will initiate a process to
open a new cash register. The cash register tpdeed will be signalled by a light bulb being
turned on, and an employee will be selected tmdttke new cash register. The selected
employee will be the one located closest to thé cagister to be opened, and he will be alerted
by a message sent to his smart watch.

COMPOSE Entities which comprise the demonstration:

" # $%$ & & (

Service Objects: lamp (seé&!), shopping carts (se&!), smart watches (see

&! 7), active TAGs

Data Processing Pipes: geo fence around the cgisiters (see&! 2), carts
aggregation.

COMPOSE applications: Queue Detector (skk), Closest employee to the cash
register, Notification Manager (se&!), Cash register selection, Cash register

light switch
COMPOSE workflows: The combined demo (sé#)

public”: "True",
"name™: "Lamp 21",

"actions": [

{
"name":"status",
"description™:"Set lamp status: on/off"
}
].l
"streams™: { },
"description™; "Lamp for the COMPOSE final demo - Unit 1"

Figure 7: Lamp Service Object

"public™: "True",
"name": "Shopping cart @1"
"actions": [1,
"streams": {
"position": {
"channels": {

"location™: {

"type": "geo_point",
"unit": "degrees"
»
id": {
"type": "number",
"unit": "identifier"
L
H
"description™: "Shopping cart for the COMPOSE final demo - Unit @1"

Figure 8: Shopping Cart Service Object

" # $%$ & & (

"public": "True",

"name": "Employee Watch
"streams":
"position™: {
"channels™: {
"location™
"type":
"unit™:
+s
"id": {
"type":
"unit":

-

I

"actions": [

{

1",

:
"geo_point”,
"coordinates™

"number",
"identifier"

"name"”: "wvibrate",

"description™: "Vibrate the Wearable®

1.

"description™: "Wearable for final demo of COMPOSE"

Figure 9: Smart Watch Service Object

" # $%0$

"current-value”: "{38Al1Carts.channels.location.current-value}”,

"current-value": "{$AllCarts.channels.id.current-value}",

"parseFloat({$AllCarts.channels.location. current-value}.split(\",\")[@]) » 41.38970 && parseFloat({3All

"current-value”: "{$AllCarts.channels.location.current-value}”,

"current-value”: "{38AllCarts.channels.id.current-value}"”,

{
"name": "Shopping cart aggregation",
"wversion™: "8.1.8",
"groups™: {
"All1Carts™: {
“solds": [[ETEEIE,
"stream”: "position”
¥
Ts
"streams”: {
"aggregate”: {
"channels": {
"location™: {
"type": "geo_point",
"unit”: "degrees"
ts
"id": {
"type": "number”,
"unit™: "identifier”
T
T
s
"inLocation™: {
"pre-filter"
"channels": {
"location™: {
"type": “"geo_point”,
"unit": "coordinates”
ts
"id": {
"type": "number",
"unit™: "identifier”
T
T
¥
T
}

Figure 10: Data Processing Pipe

@ENs=——g

() overloaded cash registers l;)\(é TS T W

Figure 11: Queue detector application

" # $%9$ &

& % (

Figure 12: Notify cashier application

Figure 13: main demo workflow

The combined capabilities of all COMPOSE componantsdemonstrated. Naturally not all
capabilities of all components are demonstratetirdiber the major capabilities and
interactions are shown.

$ The full flow of registering a new Service Object & data processing pipe) into the
platform is demonstrated.

This flow includes a developer interacting with tevelopers’ portal, while in the

" # $%$ & & - (

background the COMPOSE controller is invoked, whitcturn calls the security and
service discovery components. Finally the requeptised into the cloud run-time and
to the appropriate service, which in this caséésdata management layer.

$ The full flow of interacting with a registered se® object. This entails obtaining data
stored in the Service Object and sending commanea bbject which supports
actuation.

Internal interactions with COMPOSE components rdderthe ones described in the
first flow.

$ The full flow of creating a new COMPOSE applicati@n a workflow) which makes
use of previously registered Service Objects.

Internal interaction with COMPOSE components redertiie ones described in the
first flow, only that at the last stage a new COMFEapplication is deployed and runs
on the underlying cloud infrastructure.

%% Interaction with the service discovery componestpieviously registered entities are
located by queries invoked from the developerstagdpand used in new applications. In
addition, workflows are composed by using the ulyiley assisted composition engine.

-$ Scalable communication infrastructure is being useddding notifications from
service objects to COMPOSE applications.

3.1 Detailed view

The final COMPOSE demo will showcase most of thenrfeatures enabled by the COMPOSE
platform. The demo will be based on the smartrefglication scenario. The story line will be
centered on the supermarket located in Trento, evtier localization infrastructure is currently
deployed.

Among the COMPOSE capabilities we intend to hidftligre:
Common model for easy integration of heterogensmet objects
Easy creation of application based on object da¢ams

Object marketplace, same objects are used underatif views (brands, store
managers, users, etc.).

Integrated security aspects
Multitenancy building applications (many developénsegrating different applications)
Enclosed is a list of COMPOSE components that e used:

Feature COMPOSE Description/Benefit

Enabler

Collect sensor ServioTicy - Location info from carts and employees.

information: location Service Objects Present a unified model to collect informatign
from different sources. Scalable and real time
data ingestion and processing.

" # $%$ & & (

Aggregation of sensor
information

ServioTicy - Data
Processing Pipelin

Provide developers with consumable data
b processing capabilities to ease his work. Fg
example, amount of carts in a designated a

o
~—

Login / access control IDM Enable login for perdaradion, access
control integrated in the platform.

Real time notifications ServioTicy - Notifications between service objects (DPP
Pub/Sub and a running application
mechanisms

Service Objects glue.things - Creation of shopping carts description from

Management dashboard dashboard the interface.

A central point of management.

Discovery of existing iServe using glue.thing’s search node

capabilities (SOs,

applications)

Integration of existing | glue.thngs - Creation of applications and workflows.

capabilities composer

Creation of reusable glue.thngs - Applications re-used within a workflow

services (scanthng/evt | composer

api/like/dislike products

Cloud deployment Deployment All entities deployed within the cloud
infrastructure infrastructure

Flow Control Usage Lock User can assign fine-grained policies to
Policies and individual data items. In this way the
Dynamic distribution of data can be controlled on the
Enforcement data management as well as application lay

Story telling Action What is shown ‘

In the store, Move inside the store

Every single shopping cart/basket is

associated to an active TAG. By doi
this, it is possible to localize in real-
time where each and every asset is

the store.

with the shopping

X §art5/baskets Pictures of the store|

+ video.
Employees move
raround the store as

well.

" # $%0$

fea.

Staff members are wearing a
smartwatch and carry a smartphone
In addition an active TAG is
localising them in real-time inside th
store and used to receive real-time
notifications on the operations of the
store.

Both the tags associated with the shopping
cart/basket and the smart watches are
represented by a Service Object that captur
the object information and receives real-tim
updates of the location. Further, the objects
can also be actuated, as an example for
sending notifications.

The scenario is deployed in the supermarke
SAIT in Trento.

Use case 1: Real-time view

11

Action

What is shown

Show real-time view of the store manager
application. In this view, it is possible to
monitor the mobility of customers in real-
time. This dashboard can be used by the st
manager to obtain real-time information on
store operations and on customers’ behavia

Move inside the store
with the shopping
carts/baskets.

pre

he

r.

Use case 2: Queue monitoring

Web application: we
show the real-time

web view

What is shown

The application detects queues forming at t
checkout counter and notifies this to all
applications registered to it.

h8askets/carts moving
all together at the
checkout counter.

Use case 3: Checkout counter

opening/closing

Action

Web application: we
show a red icon

when a queue is
forming.

When the forming of a queue is detected th
application notifies this to store staff
members. The notification is received on thg
smart watch. In particular, only the staff
member that is closest to the checkout cour
to be opened is notified.

It is important to notice that the location of
staff members is displayed or not on the we
application based on the security / privacy
policy applied.

e Baskets/carts moving
all together at the
eicheckout counter.

]tWhen a new checkout
&r)unter is opened,
customers redistribute
to the checkout

bcounters which are
opened.

What is shown

Store web

application: user
moving in the store.

Smart watch: a
notification is being
sent to the smart-
watch of the staff
closest to the
checkout.

" # $%0$

Lights: when a new
checkout counter is
being opened, the
light switches to
green.

Figure 14: Checkout counters models and coordinates

3.1.1 Web Dashboard:

The dashboard presents a real-time view of the store status. This includes:
all carts moving in the store

all staff members moving in the store

status of lights which are switched on/off

a flag that turns green when a queue is detected

O O OO

4 Integrated platform Installation & configuration

Deployed in the Barcelona Supercomputing CenteC)B®rver farm on 3 servers for hosting
the 10T PaaS platform:

cloud01 (147.83.30.133): 4x2GHz 16GB RAM

" # $%$ & & 7 (

abiell (147.83.42.190): 2x3.2GHz 6GB RAM
cfdea.pc.ac.upc.edu (147.83.42.216): 16x2.4GHzGBY) RAM
The OS of all 3 is Ubuntu Lucid 10.04.4 LTS 64bit.

cloud01 functions as the main Cloud Foundry seawvel hosts all Cloud Foundry components,
while abiell and cfdea function as DEA servers (@loud Foundry applications) and also host
the backend services.

ServioTicy is deployed in a separate server fargh sdrvers also located at the Barcelona
Supercomputing Center (BSC), plus additionally 28/dr auxiliary services such as domain
rewriting and load balancing. The 4 servers devateservioTicy are all identical and have the
following specs:

minerva-1001..1004: 12x2.0Ghz, 192GB RAM, 6TB HODRTB SSD (6 SSDs per
node configured in RAID-0 to maximize 1/O bandwigtiunning Ubuntu 12.04LTS.

All nodes in the BSC deployment are connected ginainon-blocking 1GbE switching fabric
composed of 2xCisco Catalyst 3750X stacked forlsitgggical management.

In terms of software, a service broker is insthid@ both abiell and cloud01 and consists of two
parts:

0 The backend is a java app with an embedded DerbydnBgured with a
simple XML-file. The service catalogue is built dmically by reading the
YAML files given by the service providers.

0 The frontend is a Tomcat servlet hosted on CHigsel is given a user-
provided-service in order to know the RMI URL oéthackend.

Services:

0 The communication infrastructure (CSB) runs embddde web application
with 3 instances (Cloud Foundry runs each instamca different server for
redundancy). Each instance performs auto-discoseitg peer nodes via http
requests to the we application's service endpaitt,gossips the known
information to its peer nodes in order to estabdishared view of external IP
addresses and routable ports of all instancespialydhen the communication
infrastructure is spawned with the information lué peer nodes.

o DerbyDB-provisioned: A provision creates a privBgrbyDB instance; a bind
creates a database within the instance. The iresaare managed by the service
broker (supported out of the box, with a “brokeraaged=true” attribute).

When the service broker backend starts up, itstsas the derbyDB instances
if they’re down.

o iServe: Binding to the service simply returns tBerive’s servlet URL.
The iServe instance runs as a Tomcat servlet ad6h

0 MySQL-shared: Binding to the instance creates aldste and a new user.
Unbinding deletes the user and the database frer@Eh The service is
available both in cloud01 and in abiell.

o0 ServioTicy: described in sub-section 2.6.1

0 Redis 2.8.2 — hosted on cloud01, and is used byéSer caching discovery
related entities and compositions.

" # $%$ & & 2 (

0 MongoDB — Used by the Security Server, installechbiell and the bind
returns simply the MongoDB URI.

" # $%$ & & (

