Collaborative Open Market to Place
Obijects at your Service

D3.2.2.2
Prototype of the service monitoring tools

Project Acronym COMPOSE

Project Title Collaborative Open Market to Place Objects at \®envice
Project Number 317862

Work Package WP3.2 Services deployment

Lead Beneficiary IBM

Editor Benny Mandler IBM
Reviewer Alvaro Villalba Navarro BSC
Reviewer Lukasz Radziwonowicz FOKUS
Dissemination Level PU

Contractual Delivery Date 30/04/2015

Actual Delivery Date 30/04/2015

Version V1.0

#$% % & (

%)

Abstract

This document aims to accompany the prototypesco€@MPOSE monitoring tools. The
monitoring component consists of three kinds dfieat namely the monitoring communication
infrastructure, the producers of monitoring infortieen and the consumers of monitoring
information.

The monitoring infrastructure nicely fits into th#ort of producing a unified technical
approach to communication related components wit@MPOSE. Thus, the platform makes
use of the scalable communication infrastructureadly deployed as a part of the COMPOSE
platform, for the transport of the monitoring infoation. Moreover the producers and
consumers of monitoring information make use cfrestons of the communication
infrastructure for their proper operation.

Monitoring information producers come in differdlatvours. First, the built-in communication
system membership information sharing scheme pee\ad indication as to the liveness of its
own components which can represent external estitiey are engulfed with. In addition
specific local agents operate in specific partshef platform providing information stemming
from their own running environments, while makisg of internal cloud management
infrastructure as well. We demonstrate producerSOMPOSE applications liveness
information, as well as Web Objects liveness, datiggm infrastructure liveness information.

We demonstrate several monitoring information comsts, chief among them is the
COMPOSE cloud controller which is in charge of agphent and lifecycle management, which
needs this information for its own proper functiagi In addition we present an administrative
dashboard which collects and displays summary rodng information.

"#$S % & (%)

Document History

Version Date Comments
V0.1 18/03/2015 Initial version
V0.2 25/03/2015 Integrate dashboard related inféona
V0.3 30/03/2015 Integrate COMPOSE controller relatéormation
V0.4 30/03/2015 Integrate Web Objects liveness
V0.5 25/04/2015 Incorporate comments from Fokus
V1.0 30/04/2105 Add final touches and explanations
"H# S % & ((%)

Table of Contents

+ B R N A

(& # (FTTEIIISSTTEISSSSTHEHEHHHIPHEPEISSSTEEI3S

$ # $EESSTISTESSS TS MBHFHSSSESSS LS ST LSS SSEESSSES S PSES PSS S
$ +%'] PEEEIITSETEEIESSSSEESSSSTTEEISSSTEEHSS
$$ (($PTEHITTEISTHISSTEEPETESSSEEESTESSTESS
$ +% ' $3SSSTEIIS TS ST THEHHHHIT S LTSS ST SS S SSS S S SPS$SSSSTES
$$ L 0 , ! , % PEITEISEISSES
$$ (# & ,3STTTTIISTTEES THTIESSTEIISSSTEIISSS LS PSSSTEEIISSSTTEI$SSS
$$ 1, ' $ISSTEEIIESEE $IFSSTTEIIESSTTEIESSTTEESSPSEEEEPEBSTTEI$SSSSES
I L A A e e B S N R U U U T U AR
$ 0 +% J o SEEEIESSST TS SSSHHHHHHEHHP ST LTS SS ST TSP SS S S PSS PSS LTSS
$ 0 +% ' $33SSTEEIISSST TS HHHHHHEBS ST TS SS ST LTS SS TS SS PSS SPSEHES$SSSS
$ -, (% (3 $IPTTITTEIISEHISEISSEEISTESSSTEESSS PSS SEEE PSSP IESSS LSS

List of Figures

0+ A& ' $5535% SSSESSTEISTIESSSESSTES
Co (% 11 o SESESS SIS S S S SRS

0 % (" SEISSEISEES SESESSEESTSESSSESSESSSIISSSISSSEESFESSSSSSESS
(¢ 0. $SSESSSESSTESSSSIEIIBIBSESSESSISSSES

(! 20# & ,1& ! $EIPSSTEIESSEPEETEIISSSTTEIIESSTTES

(0" #& ,IPTTEEIITSSTTETSSHHHHHHB ST ISSSTTEBE$S
(¢ o (%' % 43SSIIISSTTS SSSTIIISSSTISISSSTEHS

"#$$ % & : ((*%)

¢t o' 1 AR AR AR AR AR AN A $$
¢t/m0 1 & !, SEEEBLEERIARARARRERRRA R AR AR AR R AR
(¢ o' %' 4 4 $$3$$3S$$S ST IS S S HHEHHHHHHTHHEP TS ST S S S S
¢ o (RRRRRARARAARARARA AR AR AN
Acronyms
Table 1: Acronyms table

Acronym Meaning

COMPOSE Collaborative Open Market to Place Objati®our Service

API Application Programming Interface

P2P Peer-to-Peer

Pub/Sub Publish/Subscribe

VM Virtual Machine

"#$% % &

((2%)

1 Introduction

The monitoring infrastructure is meant for the abé gathering and dissemination of
information from throughout the COMPOSE platformancerning the liveness of the various
entities. The monitoring component is comprisethoée parts, namely (i) producers:
components gathering and publishing the relevdotrnmation, (ii) consumers: components
subscribed to obtain previously published monitgrielated information (iii) the information
dissemination backbone.

The COMPOSE monitoring infrastructure comes to demgnt the built-in cloud health
monitoring system provided by the infrastructurbe Tloud internal health monitoring system
communicates with the Cloud Foundry cloud contradied provides information on the state of
VMs. That information in turn is used to help theud controller with its management
decisions. That infrastructure is used as one@sdurces of information for the COMPOSE
monitoring scheme, but in addition we want to msiee to add the flexibility to monitor the
specific elements which are important to the COMEQ@#&tform, and further ensure that the
interested parties have easy access to this infarma

The basic aspect which is being monitored is trenkess of COMPOSE components. The main
entities which are being monitored are COMPOSEiegatibns and workflows, Web Objects,
and COMPOSE infrastructure components.

The monitoring infrastructure will support, amorter aspects, self-management capabilities
within the platform. Such capabilities will be miasted by the platform being informed as to
the updated state of various components, and #nes the ability to act upon changing state of
affairs in an autonomic fashion.

A central design point is to have a unified teclbgglthat will cover the entire spectrum of
communication capabilities required for the proged efficient running of the platform. That
includes pure communication capabilities (suchieectllinks and pub / sub), as well as
membership and monitoring components.

The monitoring component’s main expected use getoe as an infrastructure providing
support for resiliency aware applications, provigfault tolerance of COMPOSE applications
and workflows.

The main general interaction with COMPOSE compaseah be viewed in Figure 1. As can

be seen in the figure, the monitoring componespiread over the internal platform scalable
communication infrastructure component. On thelwared it obtains its information from the
different kinds of components that comprise thefpten, for example the data management and
the service management components. Thus, informatidifferent kinds of COMPOSE
objects, such as Web Objects, and COMPOSE applisatind workflows can be made
available through the monitoring infrastructure. e other hand potential monitoring
information consumers can be reached via the momisystem as well, such as the service
management component which includes the COMPOSk dontroller.

"#$S % & (%)

Data Management

consume \

Web Service I 4 Comm. Fabric
I | *Monitoring
Web App ||

|

Service Management

«COMPOSE cloud controller

Figure 1: Interactions with major components

2 High Level Design

The main aim of the COMPOSE monitoring component isupport a distributed and scalable
collection and dissemination infrastructure, prawigthe ground for multiple kinds of elements
to be monitored and to gain access to monitorifgrnation. Thus, the monitoring
infrastructure is based on the COMPOSE scalableraamitation infrastructure, which at the
moment provides membership and pub / sub servicetbé COMPOSE platform.

The monitoring infrastructure is fed by local ageotllecting specific information. There is a
local cloud agent which collects mostly livenedsimation about cloud hosted components,
such as COMPOSE run-time applications. In additi@me is such an agent which monitors
COMPOSE infrastructure elements such as the datageanent and service discovery
components. In addition there is an agent thatigesvmonitoring liveness information on the
Web objects connected to COMPOSE. This agent wiltxist and co-reside with the data
management layer of COMPOSE.

These local agents will communicate with the mamtpinfrastructure via a COMPOSE
communications thin client that is available fotlbdava and JavaScript. This thin client
establishes a communication link with the COMPOGE&&able communication overlay via one
of its servers and is able to publish the monigpiirformation via that thin client as well as
receive notifications from the global monitoringrastructure. Thus, each local agent contains,
configures, and instantiates such a thin communicaiient used for publishing monitoring
information as well as receiving feedback inforroatirom the infrastructure itself.

The main information consumer of the monitoringoimfiation that is being collected is the
COMPOSE controller, which is in charge of the dgpient and lifecycle aspects of
COMPOSE applications. Liveness information is reeghin order to drive the correct lifecycle
actions. In addition, the deployment portion rebasthe lifecycle component to provide
updated information as to the state of COMPOSEiegubns, such that correct actions can be
taken upon applications deployment. In an advascedario the deployment component may
use this information to indicate to the orchestratingine about certain components that have
failed, and thus have either a new COMPOSE workfievdeployed or have the orchestration
engine bypass the failed component. The monitanfggmation is further fed back to the

"#$S % & (%)

developers’ portal enabling an interactive viewite user as to the changing state of his
applications.

A COMPOSE control Ier"_;}I

o VM2 NE— -
R A S e e
; .-.-";fr,\.__ld-—_-"['-., app !I:I hqh““-.?_{hn‘%‘: .,_‘YM4H
' | app1i | N’ s A 4
. O | app2 | | app3})
/ i VM7] O producer""-.
: ' =\ : ® consumer/
| VM5 _.
! --app4 |))
VM8: T VA V' backbog_e
. & - - P ‘.“ VM 6 'JI:: _,arsp 3 | .
| \ i / = A p,
N e R r-‘épp3 |

A
) ../

_'Data Management)

/

Figure 2: Monitoring infrastructure main components

An additional consumer of monitoring informatiorei COMPOSE dashboard, serving as an
operator monitoring hub, via which updated inforim@@bout the state of components within
the COMPOSE platform can be viewed.

In addition, in the future additional capabilitiesn be built on top of the monitoring
infrastructure by which some historical data camdléected and maintained, potentially using a
cyclic DB to keep the amount of resources consulpyeithis component in check. This
information may be used by a recommendation engiaiekeeps liveness statistics, or by a
reputation engine that takes such information agcount for assigning relative reputation
values.

2.1 Dissemination backbone

The dissemination backbone design is based orxthing scalable communication component
integrated within the COMPOSE platfofnserving membership and pub / sub capabilities
within the cloud platform. The communication seevis being deployed as a part of the core
COMPOSE platform, and is made available as a geptaiform service supporting, among
other capabilities, self-management properties.

L #$$58& , % & "l % 116% ' , ,
%' $

"#$S % & (%)

The scalable communication component is basedsaff-®rganizing, structured peer-to-peer
(P2P) overlay for scalability purposes. The overtagonstructed such that all peers are
reachable by all other peers in the group, but eotions are maintained only to a subset of the
group nodes.

The communication infrastructure enables distrigiinformation among peers in various
manners using various mechanisms. The API of themmanication infrastructure was extended
to easily accommodate entities providing and reéegimonitoring data. The API is described
in section3. This APl is supported both by the communicatervers as well as the thin
clients. Its realization is completely independeinthe actual implementation of the information
dissemination within the communication system.

2.2 Information producers

The first line of monitoring information producersnsists of the elements of the
communication infrastructure components themsekliagheir built-in membership

information gathering mechanisms. The main ainmiamtaining membership information is to
supply members of the group with updated infornmaéie to which components are currently
connected, and which others have left the grouformation about nodes that have joined, left,
or crashed is gossiped periodically by each menabis connected peers, and thus the
information is distributed eventually to all groogembers. This information can be used by the
cloud controller and its sub-components to obtairew of live and failed components.

The monitoring traffic is not expected to be higlvery agent will provide a small liveness
related piece of information every configurable amoof time, with the default being set to one
second. Other types of information will be publidhe lower rates than liveness information.

2.2.1 Monitoring agents

The main producers of monitoring information consislocal agents that collect specific
information within their respective domain and #e8. These agents are software programs
which on the one hand connect to the communicétifvastructure via a thin client, and on the
other hand collect monitoring information for a sifie entity and share that information with
the rest of the interested parties in the cloudhgabackbone of the monitoring infrastructure.

The monitoring agents producing information arelweegrated into the cloud based
COMPOSE platform by virtue of running within itsénnal components, and thus scale along
well with the cloud infrastructure. It is anticieatthat there will be at most a single agent per
VM running within cloud. The exact amount will cliggnaccordingly to established cloud
management policies, and thus will scale along tighrest of the infrastructure.

An entity called a Monitor Server is responsiblegabscribing to the Cloud Foundry NATS
message bus for events published by the GoRoutep@oent (whether a COMPOSE
application is routable or not) and uses theseigatins in order to maintain an in-memory
view of all applications considered online by Cldemlindry. When an application's active
status is changed, an event is published via th@torong API to all Monitor Clients.

A Monitor Client may ask the Monitor Server for ap-to-date full view of all application
status (called a snapshot request) via a spegakst implemented on top of the monitoring
API. Upon reception of such a request, the Morterver publishes a snapshot of its view via
the monitoring API.

"#$S % & (1 %)

The applications running in COMPOSE are classifigdhe application monitoring
infrastructure to two groups: COMPOSE applicatifereated by users) and infrastructure
related applications, which are COMPOSE infrastmeetomponents running inside Cloud
Foundry. The Monitor Client’s user is expectedpedfy which kind of information of the two
types will be propagated to the Monitor Client. Tikerentiation is done internally by
subscribing to a different pub/sub topic, so redmdnformation is not disseminated by the
monitoring infrastructure.

The applications monitoring API is built on toptbE generic monitoring API. It Hides the
details of the pub/sub implementation and provalssnpler to use API that is relevant for
monitoring application crashes and recoveries.

The API is very simple:

Monitor Server() - Constructor , draws configuration informatifmom a configuration
file and from its cloud environment (via the seevliinding mechanism).

Monitor Client mc = newMonitor Client (String coordURL, boolean infrastructure) -
Constructor

0 coordURL- The host:port url of the monitoring endyo

o infrastructure — Whether to subscribe to infradtice related events or
COMPOSE application events.

mc.getEvent() - Blocks until a new event is recdifrem theMonitor Server.

The event can be either an application snapshbligmed by théMonitor Server upon
reception of a snapshot Request, or an event abspecific application's status change
(from offline to online, or vice-versa).

mc.publishSnapshotRequest() - Publishes a reqoieatftill application status view
from theMonitor Server.

A very similar dashboard can be created to mositaius of devices. Each device is connected
to ServioTicy, the COMPOSE data management comggnesich holds a mapping between
a device's object Id and the time in which it wast connected.

This information is propagated to a software briddpgch subscribes to the COMPOSE
communication infrastructure and publishes appeatprévents when a web object goes offline,
or comes online.

The COMPOSE infrastructure components can be e@lmrd Foundry applications or services
running externally:

Infrastructure components running in Cloud Fouraheymonitored in the same way as
user applications are monitored, via subscribinthéoNATS cloud communication

service. The Monitor Server has a list of all istracture applications and uses it to
classify whether a certain application event iatesl to an infrastructure component or not.

Infrastructure components not running in Cloud Fbyrare monitored by the Monitor
Server using custom-made Monitor Plugins. A MonRbrgin is a class derived from the

& 0774443 ' $17 7, %! 7% 7 ! 7#$$8)
8)# (8)%8)&8) 8) ! 9 8) % $,

"#$S % & () %)

abstracMonitor Plugin class- a scaffolding for monitoring an externdtastructure
application with a few abstract methods:

getName(): The name of the infrastructure compbtmehe presented to the user

getMonitorCyclePeriod(): The frequency (in secondih which the component
should be sampled

doMonitor(): The implementation of the monitorinfitbe component. Returns true or
false whether the component should be considerkeoor offline.

All Monitor Plugins are loaded in runtime so addorgemoving a monitor Plugin is just a
matter of adding\removing a .class file and editimg configuration file of the Monitor Server.

The Monitor Server can be deployed as a Cloud Fguagblication itself. Currently it
monitors the following components:

iServe

ServioTicy

IDM (ldentity Management)
LCM (Life-Cycle Manager)
Service Broker(s)
COMPOSE cloud mediator.

2.3 Information consumers

The main consumers of monitoring information arpested to be within the COMPOSE
platform run-time management, most notably the CQ@E controller which is in charge of
the deployment and lifecycle components. As anmsita, the orchestration capability may use
monitoring information in the future to improve dperations. The main kind of information is
expected to consist of liveness of different kinlsomponents. Thus, the platform
management modules can figure out which entitiesave, and on the contrary which ones
have crashed and react accordingly.

Nevertheless, other entities can register as welbtain that information and make good use of
it. Note, that the communication infrastructuresed as a means for disseminating information
from the right sources to the interested targeisthe payload itself is opaque to this transport
layer. The producers and consumers of monitorirtg deed to agree on the proper format to be
used on both ends.

Overall, the amount of monitoring information comears is expected to be low.

2.3.1 COMPOSE cloud controller: Services deployment and lifecycle
manager

The COMPOSE cloud controller is in charge of cotingcbetween the COMPOSE

developers’ portal and the COMPOSE cloud run-tiitiés component receives the applications
created by the developers and passes them thrbagtire process which will make them
COMPOSE-ready. One of the controller’'s sub-comptsEna lifecycle manager which tracks
the updated state of COMPOSE applications.

"#$$ % & : ((%)

|

Figure 3: COMPOSE Life Cycle Management

The life cycle manager will use the monitoring A®Iget information about COMPOSE
applications running state. It will use that inf@tion to change the internal state of life cycle
manager entities accordingly:

if an offline == true event is received the cor@sging entity will change its state to
stopped

if an offline == false event is received the copasding entity will change its state to
running

As for the propagation of the web objects statila¢dife cycle manager records the approach
will be exactly the same provided the state chanfgemation is published in the Monitoring
Server.

Monitoring Server

Subscribe To Receive events

Lifecycle Manager

Figure 4: LCM interactions

The life cycle manager will also use the snapSaquest to get information about the state of
all its registered COMPOSE applications on start up

"#$$ % & ' ((%)

The state of the applications dictates which astican be taken on behalf of these applications.
When a COMPOSE workflow or a COMPOSE applicatiom ihe Running state, the
monitoring process is responsible for watchingd ghe LCM will obtain the information as a
consumer of monitoring events.

Thus, the lifecycle manager is a prime candidatd&ing registered to obtain monitoring
information which will help in keeping its interndhta structures up to date. That information
can be used by the COMPOSE controller to take dhect action when certain actions need to
be taken, such as the deployment of a COMPOSEcapioln or workflow in the run-time. The
exact set of steps that need to be taken, anchttre &asibility of a developer request depends
on the current state of all the components invalved

2.3.2 COMPOSE Monitoring Dashboard

The monitoring dashboard is one of the consumetiseomonitoring data generated by the
various COMPOSE components and dispatched thrdwgmonitoring infrastructure. The
monitoring dashboard plays a two-fold role:

Permanently store the data that is collected ftoervarious COMPOSE components.
The information can then be explored over timertoeoto either analyse the
performance of platform components, or identify ¢hases of a specific
malfunctioning.

Visualize both real-time, as well historical ddtaparticular, through the Monitoring
dashboard it is possible to create and configueeifip visualizations starting from the
data that is collected. There can be multiple Vigatons, each one geared towards a
specific platform KPI or information.

The COMPOSE platform administrator is expectedeidhe key utilizer of the Monitoring
Dashboard. The current implementation does notaugiifferent visualizations based on user
role.

The monitoring dashboard is based on the folloveirghitecture and components:

"#$$ % & : ((%)

Web Dashboards

onooa Storage and Search Indexer and Filtering

/ @ = kibana Cluster
'/3' SE— i Gle logstash
; {8 elagticsenrcly, =y indexer

can be scaled can be scaled

A

-

can be scaled

operalor
APl

‘ custom log queries ‘

COMPOSE Infrastructure
e Broker

logstash
shipper

4

" Jogstash
application shipper
logs

Figure 5: Dashboard Architecture

The monitoring dashboard will be based on Logst(asip://logstash.net/), which is a tool for
managing events and logs. Logstash can be usatlléstdogs, parse them, and store them for
later use (like, for searching and visualising)g&tash comes with a web interface for searching
and drilling into all of your logs.

From the COMPOSE infrastructure it is possibledéirce what information shall become part
of the monitoring dashboard. In particular, it @spible to integrate:

System logs: these logs correspond to logs, whiglyenerated by the various system
components such as, e.g., web servers, applicativers.

Application logs: specific logs that are producgdabplications, and require a constant
integration for debugging and monitoring purposes.

Monitoring agents: any agent that can be configtoedkliver data to the Logstash
infrastructure.

In all three cases, a Logstash shipper is usedroect the specific source of data to Logstash.
Specific shippers already exist for some widely sigg#em components such as, e.g., web
servers, databases, etc., while custom shippersecareated for specific cases. In the case of
COMPOSE, we created a dedicated shipper to caheatvents produced by the monitoring
agents. The shipper subscribes to the events deddrathe various agents, and pushes the
data into Logstash.

The following component is a Redis Broker. Thiamsoptional component that can be used in
order to scale the system to large volumes of evamdl data. Based on Redis, data is indexed in
order to prepare it for optimal searching and gungryOnce the data is indexed, it is stored in

an ElasticSearch cluster for storage and search.

"#$$ % & : ((*%)

Starting from the data stored in ElasticSeardis, fossible to build queries on scale to explore
the collected data. We used Kibaa the tool to create and visualize queries ordliected
data. Kibana is fully integrated with ElastichSéarand allows easily explore and give sense to
large volumes of data.

In addition, ElastichSearch provides APlIs for qumgyand extracting the data stored in the
platform. This can be helpful in the case aggrefsiews such as, e.g., monthly reports, are
needed.

The following Figure provides an example of dasmt@aeated over Kibana. The metrics and
specific charts can be configured dynamically sy ddministrator of the platform.

I) an a Discover Visualize ~ Dashboard Seftings 1minue Last15 minutes @

Rsyslog

Events Timeline &S % All Events & %

@timestamp per 30 seconds Count
A ~

Events Histogram Per Severity # % Top 10 Severities &% Top 15 hosts #$ %

Legend © Legend © Legend ©
@ info @ info @ osiris2

10
% & @ wamning @ notice @ info
o = I l ® nofice ® notice
; n lln Mlis R RN ullx

@ waming
@timestamp per 30 seconds
~

Events Histogram Per Facility s x

10 Legend @

@ cron

& @ daemon
Sl | . ksl n.on.

Figure 6: Sample Dashboard

2.3.3 Additional potential consumers

The recommendation system is deployed by the COMP@&form to help developers choose
between multiple viable building blocks options lgtdeveloping a new application. There can
be many criteria by which a recommendation systeay aperate. One of these criteria may be
based on the monitoring information. In this cdserecommendation system may register itself
to obtain monitoring information and may choosé&éep that information as a historical data
collection, potentially using a cyclic DB in orderensure that the size of the information does
not get out of hands. Such a scheme will enablegbemmendation system to determine the
availability levels of different applications, attiis be able to provide proper recommendations
based on those criteria.

The composition engine provides advice to the dgpa as to combinations of existing
building blocks which will provide the desired ootee. Thus, a composition engine may be
interested in obtaining monitoring information aade it into account while producing its

https://www.elastic.co/products/kibana

"#$S % & ' (2%)

output. This can take one of two options, eithpeghe composition output via the
recommendation engine which takes availability infation into consideration, or post-filter
the results of a composition request to discarat égast mark compositions which include
elements which are currently marked as failed.

The following link in the chain after the compositiengine is the orchestration engine. The
main goal of an orchestration engine is to takedéngred composition and make a run-time
artefact out of it. Thus, an orchestration engirag fpe interested in obtaining updated
monitoring information to be used at run-time tteathe existing composition and replace any
failed components by alternative ones that prosidelar results, but which happens to be
alive. This is currently viewed as an advanceddtrgoal of the project.

‘ Developer | ‘ Provider ‘
COMPQOSE platform 174 Monitoring info producers
| Developers portal [
i A €
v \

1Y Monitoring info consumers
| COMPOSE Controller ']

‘ Cloud Controller

Services | ,ftpplications ‘

Cloud | COMPOSE | | platform | user ‘

mmunic ati

Registry]]= discover, compose {—— Smart Spaces
recommend

NoSQL | BE data process | T _| smart city

Messaging ‘ Comm. bootstrap “'_" Comm. Peers I T I Smart Territory ‘

Y

‘ Monitoring |

Figure 7: Monitoring information flow

In Figure 7 a pictorial summary of the previoustisecis provided. In it one can observe that
the monitoring information will flow through the wonunication infrastructure from internal
COMPOSE platform components and will be distributethterested COMPOSE entities, such
as the COMPOSE cloud controller. Along the wayrttanitoring information can be stored in
a DB to be later used by additional components.

"#$$ % & : ((%)

3 What is being demonstrated

Applications monitoring: Enclosed is a simple apation in node.js that is configured to crash
exactly 30 seconds after its start-up:

var express = reguire('express');
var app = exXpress():
var time = 30;

app.get | , function {(req, res) {
reg.gend('Committing suicide in + time + seconds') ;
b
var server = app.listen(process.env.PCRT || 3000, function () {
console.log{'Listening at http ¥5:%s', server.address() .address, server.address().port):;
b

function tickTock{) {
time —= 1;
if {time < 0) {
process.exit (1)

i

setTimeout {(tickTock,1000) ;
}
tickTock(} ;

Figure 8: Sample Application Code

App started

lFhowing health and status for app harakiri in org DevBox ~ space compose—infra as admin...

requested state: started

instances: 1.1

wage: 5PM x 1 instances

wls: harakiri.147.83.30.133 . xip.io

state since cpu mMEmMor Y disk
e running 2815-A3-31 @3:58:54 PH a._8: 49 _8M of S58M 33.4M of 1G

Figure 9: Sample Application deployed to the cloud

Once the sample application is deployed to the COBIP cloud, we use the following simple
monitoring code to build an application that pritdstdout the status changes of the hara-kiri
application mentioned above:

"#$$ % & : ((%)

public static void main(String[] args) {
MonitorClient client;
try {
client = new MonitorClient("abiell.pc.ac.upc.edu:1836",false);
} catch (CSBException e) {
e.printStackTrace();
return;

h

MonitoredEvent ewvent;

while ({event = client.getEvent()}) != null) {
System.out.println(event);

}

Figure 11: monitoring application

harakiri.147.683.30.133 xip.io

Committing suicide in 5 seconds

Figure 10: monitored application from a browser
view

Once the monitored application crashes, it is aataally restarted by Cloud Foundry.
The following output is printed by our monitoring@ication in java:

Tue Mar 31 15:51:24 IDT 2015 id:f52ba504-bfee-4882e-1df87d5f58b0
147.83.42.190:61416ffline? yesuris:harakiri.147.83.30.133.xip.io

Tue Mar 31 15:51:54 IDT 2015 id:f52ba504-bfee-4682e-1df87d5f58b0
147.83.42.190:61416ffline? no uris:harakiri.147.83.30.133.xip.io

Tue Mar 31 15:52:23 IDT 2015 id:f52ba504-bfee-4682e-1df87d5f58b0
147.83.42.190:61416ffline? yesuris:harakiri.147.83.30.133.xip.io

4 API

The API is provided in Java style, since the irdéimplementation of the communications
servers is Java based.

4.1 Information Producers

"#$$ % & : ((%)

A monitoring producer is the entity which is usedtteate monitoring information channel
senders.

MonProducer mp = MonFactory.createProducer(commciession session,
<String producer_id>, <String producer_group>)

Session- refers to the communication client via which thenitoring infrastructure will
operate

producer_id — provides an identification to this producer,stitat consumers can direct
requests specifically to a certain producer

producer_group — provides an identification to this producer gmet of a related group, such
that consumers can direct requests specificallydertain group

A monitoring channel sender is the entity whichised to publish new monitoring information.
MonChannelSender mcs = mp.createChannelSended $trannel_name,
com.client.EventListener event_listener)

channel_name- provides the channel name that will be used Isyfoducer to disseminate its
monitoring information

event_listener— provides a callback mechanism which enablesctiasnel sender to be made
aware of important events that took place in thaeulying communication client.

mcs.sendMessage(com.client. Message msg)

msg— the message containing the monitoring informatiiat this producer wishes to send to
all the consumers

4.2 Information Consumers

A monitoring consumer is the entity which is usedteate monitoring information channel
receivers.

MonConsumer mc = MonFactory.createConsumer(comtcBession session)

Session- refers to the communication client via which thenitoring infrastructure will
operate

MonChannelReceiver mcr = mc.createChannelReceitrgr¢Shannel_name,
com.client.MessageListener message_listener, cemtd&ventListener
event_listener)

"#$S % & (/%)

channel_name- provides the channel name that will be used sydbnsumer to receive its
monitoring information

message_listeney provides a callback mechanism which will be invokdtenever a message
is received on the channel receiver

event_listener— provides a callback mechanism which enablesctiasnel consumer to be
made aware of important events that took plackerunderlying communication client.

4.3 Handling of monitoring requests

mp.setRequestListener(MonRequestListener mon_redistsner)

mon_request_listener the entity on the producer side which is in ckasfjreceiving and
interpreting requests from the information consuniésr example, send now updated
information)

void MonRequestListener.onRequest(com.client. Messagn_request)

mon_request— the actual monitoring request received by thelpcer

mc.sendMonitoringRequest(String producer_id, caentlMessage mon_request)

producer_id — the producer which should receive this message

mon_request— the actual monitoring request to be delivereth&oproducer

mm.sendMonitoringRequestToGroup(String producerugroeom.client.Message
mon_request)

producer_group — the producer group which should receive thissags

mon_request— the actual monitoring request to be delivereth&oproducer

"#$S % & () %)

