
�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� ��(�����%�
) �

 

 

 
 

Collaborative Open Market to Place 
Objects at your Service 

 

 

 D3.2.2.2  

Prototype of the service monitoring tools 

�

Project Acronym COMPOSE 

Project Title Collaborative Open Market to Place Objects at your Service 

Project Number 317862 

Work Package WP3.2 Services deployment 

Lead Beneficiary IBM 

Editor Benny Mandler  IBM 

Reviewer  Álvaro Villalba Navarro BSC 

Reviewer  Lukasz Radziwonowicz FOKUS 

Dissemination Level PU 

Contractual Delivery Date 30/04/2015 

Actual Delivery Date 30/04/2015 

Version V1.0 



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� ��(��
��%�
) �

Abstract 

This document aims to accompany the prototype of the COMPOSE monitoring tools. The 
monitoring component consists of three kinds of entities, namely the monitoring communication 
infrastructure, the producers of monitoring information and the consumers of monitoring 
information.  

The monitoring infrastructure nicely fits into the effort of producing a unified technical 
approach to communication related components within COMPOSE. Thus, the platform makes 
use of the scalable communication infrastructure already deployed as a part of the COMPOSE 
platform, for the transport of the monitoring information. Moreover the producers and 
consumers of monitoring information make use of extensions of the communication 
infrastructure for their proper operation. 

Monitoring information producers come in different flavours. First, the built-in communication 
system membership information sharing scheme provides an indication as to the liveness of its 
own components which can represent external entities they are engulfed with. In addition 
specific local agents operate in specific parts of the platform providing information stemming 
from their own running environments, while making use of internal cloud management 
infrastructure as well. We demonstrate producers of COMPOSE applications liveness 
information, as well as Web Objects liveness, and platform infrastructure liveness information. 

We demonstrate several monitoring information consumers, chief among them is the 
COMPOSE cloud controller which is in charge of deployment and lifecycle management, which 
needs this information for its own proper functioning. In addition we present an administrative 
dashboard which collects and displays summary monitoring information. 

 



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� ��(�����%�
) �

Document History 

Version Date Comments 

V0.1 18/03/2015 Initial version 

V0.2 25/03/2015 Integrate dashboard related information  

V0.3 30/03/2015 Integrate COMPOSE controller related information 

V0.4 30/03/2015 Integrate Web Objects liveness  

V0.5 25/04/2015 Incorporate comments from Fokus 

V1.0 30/04/2105 Add final touches and explanations 



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� ��(��*��%�
) �

�

Table of Contents 

�� +����,!������$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$�	�


� -�(&�.�����#���(��$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$���


$�� #����'�����������������$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$���


$
� +�%��'���������,!�����$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$�/�


$
$�� ���������(��(�����$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$�/�


$�� +�%��'����������!'����$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$����


$�$�� ���������!,�����������0����������,���� '��� ���,���%�� ����'���(���$$$$$$$$$$$$$����


$�$
� ���������������(�#��&����,�$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$����


$�$�� 1,,����������������������!'����$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$��2�

*� 1�+�$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$����

*$�� +�%��'���������,!�����$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$����

*$
� +�%��'����������!'����$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$��/�

*$�� -��,���(��%�'��������(���3!�����$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$�
)�

�

List of Figures 

��(!����0�+������������4��&�'�������'��������$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$���

��(!���
0����������(���%�����!��!���'������'������� �$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$���

��(!����0�������.�%��� ��������(�'����$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$��
�

��(!���*0�.����������������$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$��
�

��(!���20�#��&����,�1��&�����!���$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$��*�

��(!���	0���'����#��&����,�$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$��2�

��(!����0����������(���%��'������%��4�$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$��	�



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� ��(��2��%�
) �

��(!����0���'����1�������������,��$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$����

��(!���/0���'����1�����������,���� �,�����&�����!,� $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$����

��(!����)0�'�������,�������������%��'������4������� 4�$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$����

��(!�����0�'��������(�������������$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$����

Acronyms 

Table 1: Acronyms table 

Acronym Meaning 

COMPOSE Collaborative Open Market to Place Objects at your Service 

API Application Programming Interface 

P2P Peer-to-Peer 

Pub/Sub Publish/Subscribe 

VM Virtual Machine 

�



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� ��(��	��%�
) �

1 Introduction 

The monitoring infrastructure is meant for the scalable gathering and dissemination of 
information from throughout the COMPOSE platform, concerning the liveness of the various 
entities. The monitoring component is comprised of three parts, namely (i) producers: 
components gathering and publishing the relevant information, (ii) consumers: components 
subscribed to obtain previously published monitoring related information (iii) the information 
dissemination backbone. 

The COMPOSE monitoring infrastructure comes to complement the built-in cloud health 
monitoring system provided by the infrastructure. The cloud internal health monitoring system 
communicates with the Cloud Foundry cloud controller and provides information on the state of 
VMs. That information in turn is used to help the cloud controller with its management 
decisions. That infrastructure is used as one of the sources of information for the COMPOSE 
monitoring scheme, but in addition we want to make sure to add the flexibility to monitor the 
specific elements which are important to the COMPOSE platform, and further ensure that the 
interested parties have easy access to this information. 

The basic aspect which is being monitored is the liveness of COMPOSE components. The main 
entities which are being monitored are COMPOSE applications and workflows, Web Objects, 
and COMPOSE infrastructure components. 

The monitoring infrastructure will support, among other aspects, self-management capabilities 
within the platform. Such capabilities will be manifested by the platform being informed as to 
the updated state of various components, and thus have the ability to act upon changing state of 
affairs in an autonomic fashion. 

A central design point is to have a unified technology that will cover the entire spectrum of 
communication capabilities required for the proper and efficient running of the platform. That 
includes pure communication capabilities (such as direct links and pub / sub), as well as 
membership and monitoring components. 

The monitoring component’s main expected use is to serve as an infrastructure providing 
support for resiliency aware applications, providing fault tolerance of COMPOSE applications 
and workflows.  

The main general interaction with COMPOSE components can be viewed in Figure 1. As can 
be seen in the figure, the monitoring component is spread over the internal platform scalable 
communication infrastructure component. On the one hand it obtains its information from the 
different kinds of components that comprise the platform, for example the data management and 
the service management components. Thus, information on different kinds of COMPOSE 
objects, such as Web Objects, and COMPOSE applications and workflows can be made 
available through the monitoring infrastructure. On the other hand potential monitoring 
information consumers can be reached via the monitoring system as well, such as the service 
management component which includes the COMPOSE cloud controller. 



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� ��(�����%�
) �

 

Figure 1: Interactions with major components 

2 High Level Design 

The main aim of the COMPOSE monitoring component is to support a distributed and scalable 
collection and dissemination infrastructure, providing the ground for multiple kinds of elements 
to be monitored and to gain access to monitoring information. Thus, the monitoring 
infrastructure is based on the COMPOSE scalable communication infrastructure, which at the 
moment provides membership and pub / sub services for the COMPOSE platform.  

The monitoring infrastructure is fed by local agents collecting specific information. There is a 
local cloud agent which collects mostly liveness information about cloud hosted components, 
such as COMPOSE run-time applications. In addition there is such an agent which monitors 
COMPOSE infrastructure elements such as the data management and service discovery 
components. In addition there is an agent that provides monitoring liveness information on the 
Web objects connected to COMPOSE. This agent will co-exist and co-reside with the data 
management layer of COMPOSE.  

These local agents will communicate with the monitoring infrastructure via a COMPOSE 
communications thin client that is available for both Java and JavaScript. This thin client 
establishes a communication link with the COMPOSE scalable communication overlay via one 
of its servers and is able to publish the monitoring information via that thin client as well as 
receive notifications from the global monitoring infrastructure. Thus, each local agent contains, 
configures, and instantiates such a thin communication client used for publishing monitoring 
information as well as receiving feedback information from the infrastructure itself. 

The main information consumer of the monitoring information that is being collected is the 
COMPOSE controller, which is in charge of the deployment and lifecycle aspects of 
COMPOSE applications. Liveness information is required in order to drive the correct lifecycle 
actions. In addition, the deployment portion relies on the lifecycle component to provide 
updated information as to the state of COMPOSE applications, such that correct actions can be 
taken upon applications deployment. In an advanced scenario the deployment component may 
use this information to indicate to the orchestration engine about certain components that have 
failed, and thus have either a new COMPOSE workflow be deployed or have the orchestration 
engine bypass the failed component. The monitoring information is further fed back to the 



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� ��(�����%�
) �

developers’ portal enabling an interactive view to the user as to the changing state of his 
applications. 

 

Figure 2: Monitoring infrastructure main components 

An additional consumer of monitoring information is a COMPOSE dashboard, serving as an 
operator monitoring hub, via which updated information about the state of components within 
the COMPOSE platform can be viewed.  

In addition, in the future additional capabilities can be built on top of the monitoring 
infrastructure by which some historical data can be collected and maintained, potentially using a 
cyclic DB to keep the amount of resources consumed by this component in check. This 
information may be used by a recommendation engine that keeps liveness statistics, or by a 
reputation engine that takes such information into account for assigning relative reputation 
values. 

2.1 Dissemination backbone 

The dissemination backbone design is based on the existing scalable communication component 
integrated within the COMPOSE platform1, serving membership and pub / sub capabilities 
within the cloud platform. The communication service is being deployed as a part of the core 
COMPOSE platform, and is made available as a generic platform service supporting, among 
other capabilities, self-management properties.  

�������������������������������������������������������������
1����#*$
$��5��&����,������� ����%��&����������''! �����������%�����!��!��6�%���'����,������,�
��%��'�����$�



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� ��(��/��%�
) �

The scalable communication component is based on a self-organizing, structured peer-to-peer 
(P2P) overlay for scalability purposes. The overlay is constructed such that all peers are 
reachable by all other peers in the group, but connections are maintained only to a subset of the 
group nodes.  

The communication infrastructure enables distributing information among peers in various 
manners using various mechanisms. The API of the communication infrastructure was extended 
to easily accommodate entities providing and receiving monitoring data. The API is described 
in section �3. This API is supported both by the communication servers as well as the thin 
clients. Its realization is completely independent of the actual implementation of the information 
dissemination within the communication system. 

2.2 Information producers 

The first line of monitoring information producers consists of the elements of the 
communication infrastructure components themselves, via their built-in membership 
information gathering mechanisms. The main aim for maintaining membership information is to 
supply members of the group with updated information as to which components are currently 
connected, and which others have left the group.  Information about nodes that have joined, left, 
or crashed is gossiped periodically by each member to its connected peers, and thus the 
information is distributed eventually to all group members. This information can be used by the 
cloud controller and its sub-components to obtain a view of live and failed components.  

The monitoring traffic is not expected to be high. Every agent will provide a small liveness 
related piece of information every configurable amount of time, with the default being set to one 
second. Other types of information will be published in lower rates than liveness information. 

2.2.1 Monitoring agents 

The main producers of monitoring information consist of local agents that collect specific 
information within their respective domain and entities. These agents are software programs 
which on the one hand connect to the communication infrastructure via a thin client, and on the 
other hand collect monitoring information for a specific entity and share that information with 
the rest of the interested parties in the cloud via the backbone of the monitoring infrastructure. 

The monitoring agents producing information are well integrated into the cloud based 
COMPOSE platform by virtue of running within its internal components, and thus scale along 
well with the cloud infrastructure. It is anticipated that there will be at most a single agent per 
VM running within cloud. The exact amount will change accordingly to established cloud 
management policies, and thus will scale along with the rest of the infrastructure. 

�����������	
��
����������������
An entity called a Monitor Server is responsible for subscribing to the Cloud Foundry NATS 
message bus for events published by the GoRouter component (whether a COMPOSE 
application is routable or not) and uses these publications in order to maintain an in-memory 
view of all applications considered online by Cloud Foundry. When an application's active 
status is changed, an event is published via the monitoring API to all Monitor Clients. 

A Monitor Client may ask the Monitor Server for an up-to-date full view of all application 
status (called a snapshot request) via a special request implemented on top of the monitoring 
API. Upon reception of such a request, the Monitor Server publishes a snapshot of its view via 
the monitoring API. 



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� � �(���)��%�
) �

The applications running in COMPOSE are classified by the application monitoring 
infrastructure to two groups: COMPOSE applications (created by users) and infrastructure 
related applications, which are COMPOSE infrastructure components running inside Cloud 
Foundry. The Monitor Client’s user is expected to specify which kind of information of the two 
types will be propagated to the Monitor Client. The differentiation is done internally by 
subscribing to a different pub/sub topic, so redundant information is not disseminated by the 
monitoring infrastructure. 

The applications monitoring API is built on top of the generic monitoring API. It Hides the 
details of the pub/sub implementation and provides a simpler to use API that is relevant for 
monitoring application crashes and recoveries. 

The API is very simple:  

�  Monitor Server() - Constructor , draws configuration information from a configuration 
file and from its cloud environment (via the service binding mechanism). 

�  Monitor Client  mc = new Monitor Client (String coordURL, boolean infrastructure) -  
Constructor 

o coordURL- The host:port url of the monitoring endpoint 

o infrastructure – Whether to subscribe to infrastructure related events or 
COMPOSE application events. 

�  mc.getEvent() - Blocks until a new event is received from the Monitor Server. 
The event can be either an application snapshot (published by the Monitor Server upon 
reception of a snapshot Request, or an event about a specific application's status change 
(from offline to online, or vice-versa). 

�  mc.publishSnapshotRequest() - Publishes a request for a full application status view 
from the Monitor Server. 

���������������
�������
A very similar dashboard can be created to monitor status of devices. Each device is connected 
to ServioTicy, the COMPOSE data management component2,  which holds a mapping between 
a device's object Id and the time in which it was last connected.  

This information is propagated to a software bridge which subscribes to the COMPOSE 
communication infrastructure and publishes appropriate events when a web object goes offline, 
or comes online.�

�����������	
��
��������������������������
The COMPOSE infrastructure components can be either Cloud Foundry applications or services 
running externally: 

�  Infrastructure components running in Cloud Foundry are monitored in the same way as 
user applications are monitored, via subscribing to the NATS cloud communication 
service. The Monitor Server has a list of all infrastructure applications and uses it to 
classify whether a certain application event is related to an infrastructure component or not. 

�  Infrastructure components not running in Cloud Foundry are monitored by the Monitor 
Server using custom-made Monitor Plugins. A Monitor Plugin is a class derived from the 

�������������������������������������������������������������

 �&���077444$��'������������$�!7�����7,�%�!��7%����7 �!����������7#
$�$�8
)�
8
)#���(�8
)�%8
)�&�8
)������8
)����!���9�����8
)�� ���%�������$,��:�



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� � �(������%�
) �

abstract Monitor Plugin  class- a scaffolding for monitoring an external infrastructure 
application with a few abstract methods: 

�  getName():  The name of the infrastructure component to be presented to the user 

�  getMonitorCyclePeriod(): The frequency (in seconds) with which the component 
should be sampled 

�  doMonitor(): The implementation of the monitoring of the component. Returns true or 
false whether the component should be considered online or offline.  

All Monitor Plugins are loaded in runtime so adding or removing a monitor Plugin is just a 
matter of adding\removing a .class file and editing the configuration file of the Monitor Server. 

The Monitor Server can be deployed as a Cloud Foundry application itself. Currently it 
monitors the following components:  

�  iServe 

�  ServioTicy 

�  IDM (Identity Management) 

�   LCM (Life-Cycle Manager) 

�  Service Broker(s) 

�   COMPOSE cloud mediator. 

2.3 Information consumers 

The main consumers of monitoring information are expected to be within the COMPOSE 
platform run-time management, most notably the COMPOSE controller which is in charge of 
the deployment and lifecycle components. As an extension, the orchestration capability may use 
monitoring information in the future to improve its operations. The main kind of information is 
expected to consist of liveness of different kinds of components. Thus, the platform 
management modules can figure out which entities are alive, and on the contrary which ones 
have crashed and react accordingly. 

Nevertheless, other entities can register as well to obtain that information and make good use of 
it. Note, that the communication infrastructure is used as a means for disseminating information 
from the right sources to the interested targets, but the payload itself is opaque to this transport 
layer. The producers and consumers of monitoring data need to agree on the proper format to be 
used on both ends. 

Overall, the amount of monitoring information consumers is expected to be low. 

2.3.1 COMPOSE cloud controller: Services deployment  and lifecycle 
manager 

The COMPOSE cloud controller is in charge of connecting between the COMPOSE 
developers’ portal and the COMPOSE cloud run-time. This component receives the applications 
created by the developers and passes them through the entire process which will make them 
COMPOSE-ready. One of the controller’s sub-components is a lifecycle manager which tracks 
the updated state of COMPOSE applications. 



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� � �(���
��%�
) �

 

 

The life cycle manager will use the monitoring API to get information about COMPOSE 
applications running state. It will use that information to change the internal state of life cycle 
manager entities accordingly: 

�  if an offline == true event is received the corresponding entity will change its state to 
stopped 

�  if an offline == false event is received the corresponding entity will change its state to 
running 

As for the propagation of the web objects state to the life cycle manager records the approach 
will be exactly the same provided the state change information is published in the Monitoring 
Server. 

 

 

 

The life cycle manager will also use the snapShot request to get information about the state of 
all its registered COMPOSE applications on start up. 

Figure 4: LCM interactions 

Figure 3: COMPOSE Life Cycle Management 



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� � �(������%�
) �

The state of the applications dictates which actions can be taken on behalf of these applications. 
When a COMPOSE workflow or a COMPOSE application is in the Running state, the 
monitoring process is responsible for watching it and the LCM will obtain the information as a 
consumer of monitoring events. 

Thus, the lifecycle manager is a prime candidate for being registered to obtain monitoring 
information which will help in keeping its internal data structures up to date. That information 
can be used by the COMPOSE controller to take the correct action when certain actions need to 
be taken, such as the deployment of a COMPOSE application or workflow in the run-time. The 
exact set of steps that need to be taken, and the entire feasibility of a developer request depends 
on the current state of all the components involved. 

2.3.2 COMPOSE Monitoring Dashboard  

The monitoring dashboard is one of the consumers of the monitoring data generated by the 
various COMPOSE components and dispatched through the monitoring infrastructure. The 
monitoring dashboard plays a two-fold role: 

�  Permanently store the data that is collected from the various COMPOSE components. 
The information can then be explored over time in order to either analyse the 
performance of platform components, or identify the causes of a specific 
malfunctioning.  

�  Visualize both real-time, as well historical data. In particular, through the Monitoring 
dashboard it is possible to create and configure specific visualizations starting from the 
data that is collected. There can be multiple visualizations, each one geared towards a 
specific platform KPI or information. 

The COMPOSE platform administrator is expected to be the key utilizer of the Monitoring 
Dashboard. The current implementation does not support different visualizations based on user 
role. 

The monitoring dashboard is based on the following architecture and components: 

�



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� � �(���*��%�
) �

�

Figure 5: Dashboard Architecture 

The monitoring dashboard will be based on Logstash (http://logstash.net/), which is a tool for 
managing events and logs. Logstash can be used to collect logs, parse them, and store them for 
later use (like, for searching and visualising). Logstash comes with a web interface for searching 
and drilling into all of your logs. 

From the COMPOSE infrastructure it is possible to define what information shall become part 
of the monitoring dashboard. In particular, it is possible to integrate: 

�  System logs: these logs correspond to logs, which are generated by the various system 
components such as, e.g., web servers, application servers.  

�  Application logs: specific logs that are produced by applications, and require a constant 
integration for debugging and monitoring purposes. 

�  Monitoring agents: any agent that can be configured to deliver data to the Logstash 
infrastructure. 

In all three cases, a Logstash shipper is used to connect the specific source of data to Logstash. 
Specific shippers already exist for some widely use system components such as, e.g., web 
servers, databases, etc., while custom shippers can be created for specific cases. In the case of 
COMPOSE, we created a dedicated shipper to collect the events produced by the monitoring 
agents. The shipper subscribes to the events generated by the various agents, and pushes the 
data into Logstash. 

The following component is a Redis Broker. This is an optional component that can be used in 
order to scale the system to large volumes of events and data. Based on Redis, data is indexed in 
order to prepare it for optimal searching and querying. Once the data is indexed, it is stored in 
an ElasticSearch cluster for storage and search.  



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� � �(���2��%�
) �

Starting from the data stored in ElasticSearch, it is possible to build queries on scale to explore 
the collected data. We used Kibana3 as the tool to create and visualize queries on the collected 
data. Kibana is fully integrated with ElastichSearch, and allows easily explore and give sense to 
large volumes of data. 

In addition, ElastichSearch provides APIs for querying and extracting the data stored in the 
platform. This can be helpful in the case aggregated views such as, e.g., monthly reports, are 
needed. 

The following Figure provides an example of dashboard created over Kibana. The metrics and 
specific charts can be configured dynamically by the administrator of the platform. 

�

Figure 6: Sample Dashboard 

2.3.3 Additional potential consumers 

����������������������

The recommendation system is deployed by the COMPOSE platform to help developers choose 
between multiple viable building blocks options while developing a new application. There can 
be many criteria by which a recommendation system may operate. One of these criteria may be 
based on the monitoring information. In this case the recommendation system may register itself 
to obtain monitoring information and may choose to keep that information as a historical data 
collection, potentially using a cyclic DB in order to ensure that the size of the information does 
not get out of hands. Such a scheme will enable the recommendation system to determine the 
availability levels of different applications, and thus be able to provide proper recommendations 
based on those criteria. 

���������	������������������

The composition engine provides advice to the developer as to combinations of existing 
building blocks which will provide the desired outcome. Thus, a composition engine may be 
interested in obtaining monitoring information and take it into account while producing its 

�������������������������������������������������������������
� �https://www.elastic.co/products/kibana�



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� � �(���	��%�
) �

output. This can take one of two options, either pipe the composition output via the 
recommendation engine which takes availability information into consideration, or post-filter 
the results of a composition request to discard or at least mark compositions which include 
elements which are currently marked as failed. 


��������������������

The following link in the chain after the composition engine is the orchestration engine. The 
main goal of an orchestration engine is to take the desired composition and make a run-time 
artefact out of it. Thus, an orchestration engine may be interested in obtaining updated 
monitoring information to be used at run-time to alter the existing composition and replace any 
failed components by alternative ones that provide similar results, but which happens to be 
alive. This is currently viewed as an advanced stretch goal of the project. 

 

Figure 7: Monitoring information flow 

In Figure 7 a pictorial summary of the previous section is provided. In it one can observe that 
the monitoring information will flow through the communication infrastructure from internal 
COMPOSE platform components and will be distributed to interested COMPOSE entities, such 
as the COMPOSE cloud controller. Along the way the monitoring information can be stored in 
a DB to be later used by additional components. 

 

 



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� � �(������%�
) �

3 What is being demonstrated 

Applications monitoring: Enclosed is a simple application in node.js that is configured to crash 
exactly 30 seconds after its start-up: 

 

 

Once the sample application is deployed to the COMPOSE cloud, we use the following simple 
monitoring code to build an application that prints to stdout the status changes of the hara-kiri 
application mentioned above: 

 

Figure 8: Sample Application Code�

Figure 9: Sample Application deployed to the cloud�



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� � �(������%�
) �

Once the monitored application crashes, it is automatically restarted by Cloud Foundry.  
The following output is printed by our monitoring application in java: 

Tue Mar 31 15:51:24 IDT 2015 id:f52ba504-bfee-4ed5-952e-1df87d5f58b0 
147.83.42.190:61415 offline? yes uris:harakiri.147.83.30.133.xip.io 

Tue Mar 31 15:51:54 IDT 2015 id:f52ba504-bfee-4ed5-952e-1df87d5f58b0 
147.83.42.190:61416 offline? no uris:harakiri.147.83.30.133.xip.io 

Tue Mar 31 15:52:23 IDT 2015 id:f52ba504-bfee-4ed5-952e-1df87d5f58b0 
147.83.42.190:61416 offline? yes uris:harakiri.147.83.30.133.xip.io 

4 API 

The API is provided in Java style, since the internal implementation of the communications 
servers is Java based. 

4.1 Information Producers 

�  	���������������������������������������������

Figure 11: monitoring application�

Figure 10: monitored application from a browser 
view�



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� � �(���/��%�
) �

A monitoring producer is the entity which is used to create monitoring information channel 
senders. 

MonProducer mp = MonFactory.createProducer(com.client.Session session, 
<String producer_id>,  <String producer_group>) 

Session – refers to the communication client via which the monitoring infrastructure will 
operate 

producer_id – provides an identification to this producer, such that consumers can direct 
requests specifically to a certain producer 

producer_group – provides an identification to this producer as a part of a related group, such 
that consumers can direct requests specifically to a certain group 

�  	�������������������������������������������������� ������

A monitoring channel sender is the entity which is used to publish new monitoring information. 

MonChannelSender mcs = mp.createChannelSender(String channel_name, 
com.client.EventListener event_listener) 

channel_name – provides the channel name that will be used by this producer to disseminate its 
monitoring information 

event_listener – provides a callback mechanism which enables this channel sender to be made 
aware of important events that took place in the underlying communication client. 

�  ���������������������������������������

mcs.sendMessage(com.client.Message msg) 

msg – the message containing the monitoring information that this producer wishes to send to 
all the consumers 

4.2 Information Consumers 

�  	���������������������������������������������

A monitoring consumer is the entity which is used to create monitoring information channel 
receivers. 

MonConsumer mc = MonFactory.createConsumer(com.client.Session session) 

Session – refers to the communication client via which the monitoring infrastructure will 
operate 

�  	�������������������������������������������������� ��������

MonChannelReceiver mcr = mc.createChannelReceiver(String channel_name, 
com.client.MessageListener message_listener, com.client.EventListener 
event_listener) 



�
�
��������	
�������� ������������������������������ �������������� �!����������
�

 
"� #�
$
$
������� ����%��&����������'��������(������� � �(��
)��%�
) �

channel_name – provides the channel name that will be used by this consumer to receive its 
monitoring information 

message_listener�;� provides a callback mechanism which will be invoked whenever a message 
is received on the channel receiver 

event_listener – provides a callback mechanism which enables this channel consumer to be 
made aware of important events that took place in the underlying communication client. 

4.3 Handling of monitoring requests 

�  �� �������������������������������������

mp.setRequestListener(MonRequestListener mon_request_listener) 

mon_request_listener – the entity on the producer side which is in charge of receiving and 
interpreting requests from the information consumers (for example, send now updated 
information) 

�  ������������ ��������������������������������

void MonRequestListener.onRequest(com.client.Message mon_request) 

 

mon_request – the actual monitoring request received by the producer 

�  �������������������� �������������������

mc.sendMonitoringRequest(String producer_id, com.client.Message mon_request) 

 

producer_id – the producer which should receive this message 

mon_request – the actual monitoring request to be delivered to the producer 

�  �������������������� �����������������������������

mm.sendMonitoringRequestToGroup(String producer_group, com.client.Message 
mon_request) 

 

producer_group – the producer group which should receive this message 

mon_request – the actual monitoring request to be delivered to the producer 

 


