
�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ����������� �

Collaborative Open Market to Place
Objects at your Service

D32.1
Design of the interfaces for service execution

Project Acronym COMPOSE

Project Title Collaborative Open Market to Place Objects at your Service

Project Number 317862

Work Package WP32 Services Deployment

Lead Beneficiary RETE

Editor Carmen Vicente RETE

Reviewer Carlos Pedrinaci OU

Reviewer Yoav Tock IBM

Reviewer Benny Mandler IBM

Dissemination Level PU

Contractual Delivery Date 31/07/2013

Actual Delivery Date 30/10/2013

Version V1.4

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ����������� �

Abstract

This report describes the set of interfaces that will enable managing the lifecycle of COMPOSE
services including dynamically composed services. These capabilities will enable for example
the deployment, upgrade and deletion of services.

Thus, the report contains two main sections:

• Service Lifecycle that shows the service process, which goes through from authoring,
validation, deploying or running, until finally its deletion.

• The set of interfaces that will enable the interaction with the users and others
components of the COMPOSE platform.

Compose will enable users to define new contents and applications using open services and
interfaces that enable the quick and easy creation and deployment. It enables end-users to
create their own services and manage the lifecycle of those services autonomously. It also
enables users to share these services within a community that will promote the most interesting
ones at a minimum cost.

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ����������� �

Document History

�������� 	
��� �������

����� ����������� �����
��

����� �����������
���������	�

����� ������������
���������	�

����� ����������� !""� #
�$	� �� ���� ���%�
&�� ����
����� ���
��"�'()������*�	�

����� ����+������ !""� ��##����*���� ���,� '()�� ����*�	,� ��##�
���*���� �,� ����� &
��� ������	�
-������
�	.� ��"� ���� ����
/��
�� ��&�
�!((!0� -1���1.� ��"� �23!43%534�
-1����.��

����� ����+������ ��� 	����� ���� �� �����,� �""� �
����� 1,�
&��� 	����� 1����� �� 1����,� �""� ����

��������	� "��
�
�
�� ��&� �!((!0� ��"�
�23!43%534,� �""� 	����� ���,� �""� 	�����
������"�&
���������	��

����� ����������� 6��������� ��"� �
��#
	�� ����
/��
�	 � ��"�
���#�	
�	� ��&� ���� 7�� 8
"��
"
	��		
�	�

���1� �����������
��� ������	�
�� ���*���� �,� ��&�
�23!43%534� &"
�
���
�	�� 2�&���
���	���&����������������"����*�������

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� �����1����� �

�

Table of Contents� �

)
	����4�/#�	������������������������������������� ��� �

���'/9���
�� ��������������������������������������� �� �

���'����
�8 �� ��� �

����'����
�8�����#���"��' �'(3����
�
�	 ����������� ������������������������������� �

�������#�"�:��"�; �������������������������������� �������������������������������������� �

���(���
���)
���;�#� �������������������������������� ��

����'����
�8��������������������������������������� ���

����(���
���)
���;�#����	��
*�
� ������������������� ��������������������������������������

1��6��������	����	���
���������
� ���������������� ���

1���'����
�8��������������������������������������� ���

1���6��������	�
"���
�
���
� ���������������������� ��

1�����0	���6��������	 ������������������������������ ��

1������' �'(3�*#����&�
��������	 ������������������� ������������������������������+

1������' �'(3�����##���
��������	 ����������������� ������������������������������+

1���2�<�
��&���	�(*��
�
���
� ���������������������� �������������������������������������

1�����6���"���
� ��������������������������������� ���

1�����!		�&*�
�	�=�"�*��"���
�	�������������������� �������������������������������

1�����0	��>	�
��������	���<�
��&���	 ��������������� ���������������������������������

���6������������
�
�
� ���������������������������� ��

�����' �'(3�3��
�;�2�	���� ������������������������� �����������������������������������

����3�354�2�	���� ���������������������������������� ��

����:6)3�2�	���� ���������������������������������� ���

���2��������	 �������������������������������������� ��

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ����������� �

List of Figures

:
������?�4����' �'(3�*���&��$��*#�����**���� ����� ������������������������� �

:
������?�4����' �'(3�!���
������� ������������������� ��������������������������������� +

:
������?��#�"�:��"�;�!���
������� ��������������� ��������������������������������������

:
�����1?�(���
��	�(������������������������������� ��

:
������?�4���'(�)���	
���=�2���4
&� ���������������� ����������������������������������

:
������?�4����' �'(3�(���
��	�)
���;�#�������������� ��������������������������������1

:
������?�2��%4
&������
������� �������������������� ��

:
�����+?�)
���;�#��6��������	 ��������������������� ��+

 List of Tables

4�/#���?�(���
�����*#;&����6�������� ��������������� ������������������������������������

4�/#���?�(���
���)
���;�#�� �����&��� ��������������� �����������������������������������

4�/#���?�(���
����
�8�6�������� ���������������������� ���������������������������������������

4�/#��1?�0	���&�����&����6�������� ����������������� ������������������������������������

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ����������� �

Acronyms

������ � ��
�����

�' �'(3� �##�/���
��� '*��� ��$��� �� �#���� '/9���	� ��� ;���
(���
���

(�@� (��8��������#*&����@
��

6�3� 6��������"�����#*&����3��
��&����

6333� 6�	�
�������3#����
��#���"�3#�����
�	�3��
�� ��	�

!�6� !**#
���
�������&&
���6���������

!!!� !������
���
�,�!����
A��
����"�!�����
���

6�'� 6��'���

(�6� (���
�����#
���;�6���������

() � (���
���)
���;�#�� �����&����

(�6� (���
����
�8�6����������

0 6� 0	���&�����&����6����������

()!� (���
���)���#�!����&����

'()�� '*���(���
��	����)
���;�#���##�/���
��

�

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ����������� �

�� Objective

This report will describe the set of interfaces that will enable managing the lifecycle of
dynamically created and composed services. Thus, two main sections are included:

• Lifecycle of services
• Interfaces for service execution

�� Overview

The main goal of the COMPOSE project is to enable open markets of services based on the
Internet of Things. There will be the provisioning of an open and scalable marketplace
infrastructure, in which smart objects are associated to services that can be combined, managed
and integrated in a standardised way to easily and quickly build innovative applications. The
COMPOSE project will provide for the easy creation of base services, composite services and
applications stemming from the operation of smart objects.

�

�

Figure 1: The COMPOSE open marketplace approach
COMPOSE services are functional units created and deployed by developers. Developers will
create COMPOSE services using the Compose platform IDE and SDK. Such newly created
services will be readily deployable into the COMPOSE platform run-time using internally the
interfaces described in this document. In addition, Service Objects, which are digital
representations of real-world physical smart objects, can be configured and deployed to be

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� �����+����� �

accessible via the platform's Service Objects Web Server by using the platform's developer’s
portal. A high level view of the architecture of the COMPOSE Platform is shown on the picture
bellow:

�

Figure 2: The COMPOSE Architecture
The SDK provides an easy to use mechanism for creating and publishing services. The Service
Objects web server provides access to data or operations provided by Service Objects. Once a
service has been created and validated, it is ready to be deployed into the platform. This
deployment will be performed inside the COMPOSE run-time which will consist of a specially
customized for IoT PaaS based on Cloud Foundry [2]. The COMPOSE run-time will enable
automatic deployment of services in an efficient and easy manner.

A Service Lifecycle Management module provides interfaces to create and execute services by
developers through a secure manner, and support transitions between different phases of a
service. Transitions include the deployment of service logic from an abstract service creation
description into the service execution environment. During execution the runtime system
constantly monitors the services and their resource usage in order to provide the capability of
updating performance runtime parameters dynamically. The Service Lifecycle Management
module will interact with several of the platform components to ensure its proper operation,
including the run-time, monitoring, the registry and the data store.

The deployment and lifecycle management modules will be realized in a COMPOSE controller
component which will be an integral part of the COMPOSE platform run-time. Thus, the main
interactions of this component will be with the run-time on the one hand, the SDK on the other
hand, as well as with the services registry and the various COMPOSE executable entities,
namely Service Objects, Services, and Applications.

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ����������� �

��� Overview of related COMPOSE entities

The base object is a Smart object which is an internet connected object capable of either
providing contextual data or acting on the external environment. Such an object is elicited to a
service object which is a digital representation of the real-world smart object. During that
process it is ingested into the COMPOSE platform, enhanced semantically, imported into the
registry, and becomes accessible via a given COMPOSE service object.

A service is an external developer created entity that relies on service objects for its operation.
These are the basic entities that external developers create and need to be deployed by the
COMPOSE platform, and thus made accessible by external end users. Composite services can
be created as well, which are the results of the composition of several base services. Such
services need to be automatically deployed as well, and supported via a workflow-like
mechanism of operation.

An application is also provided mostly by external developers, mostly running outside the
COMPOSE platform, while relying on and communicating with services running within the
platform.

End users are the consumers of the services and applications managed by the platform.

Software Developers are the main target of this deliverable. The support for automatic
deployment of services created by these developers is a capability that needs to be provided by
the platform.

Benefits to users provided by the service lifecycle management infrastructure are:

• Increase developers control over their created services and applications.
• Reduce complexity, facilitating end-users to deploy new services in an easier way.
• Reduce time-to-market and costs.
• Automate the Lifecycle process for new and existing services.
• Automatically add a measure of security to the run-time.
• Guarantee that new services can work properly in the defined environment.
• Ensure that all the dependencies needed for a new service are available.

������ Cloud Foundry

Cloud Foundry is an open Platform as a Service (PaaS) designed to makes it faster and easier to
build, test, deploy and scale applications, which provides a choice of private and public cloud
distributions, public cloud instances, developer frameworks and application services.

This platform includes a self-service application execution engine, an automation engine for
application deployment and lifecycle management, a scriptable command line interface (CLI),
integration with development tools to ease development and deployment processes and an open
architecture for quick development framework integration, application services interface and
cloud provider interface.

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

Figure 3: Cloud Foundry Architecture1
On the following picture is shown how COMPOSE services will be staged in Cloud Foundry:

Figure 4: Services Stage2

1. At the command line, the developer goes into the directory holding their application and
uses the Cloud Foundry command line tool to issue a push command.

�������������������������������������� �
� �(��?��#�"�:��"�;�5B�C4����
��#C'����
�8�**���
� See: http://docs.cloudfoundry.com/docs/running/architecture/how-applications-are-staged.html�

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

2. The Cloud Foundry command line tool tells Cloud Controller to create a record for the
service.

3. The Cloud Controller stores the service metadata (e.g. the service name, number of
instances the developer specified…).

4. The Cloud Foundry command line tool uploads the service files.
5. The Cloud Controller stores the raw service files in the blobstore.
6. Te Cloud Foundry command line tool issues a service start command.
7. Because the service has not already been staged, the Cloud Controller chooses a Droplet

Execution Engine (DEA) instance from the DEA pool to stage the service. The staging
DEA uses the instructions in the build pack to stage the service.

8. The staging DEA streams the output of the staging process so the developer can
troubleshoot services staging problems.

9. The staging DEA packages up the resulting staged services into a tar ball called a
“droplet” and stores it in the blob store. The results are cached and used next time the
service is staged.

10. The staging DEA reports to Cloud Controller that staging is complete.
11. The Cloud Controller chooses one or more DEAs form the pool to run the staged

service.
12. The running DEAs report back the status of the service to Cloud Controller.

�� Service Lifecycle

��� Overview

The main objective of the proposed lifecycle is to illustrate the different stages which the
services created by developers in COMPOSE platform may follow, from their introduction into
the lifecycle through their validation and their subsequent start-up. The Lifecycle stages are
based and inspired by the Open Services for Lifecycle Collaboration (OSLC) [3], which is
based in turn on the W3C (World Wide Web Consortium) Linked Data.

The OSLC is an open community creating specifications for integrating tools. These
specifications allow conforming independent software and product lifecycle tools to integrate
their data and workflows in support of end-to-end lifecycle processes.

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

�

Figure 5: The OSCL Design & Run Time
Most of the entities depicted in Figure 3 are realized throughout the COMPOSE platform in
various components. The "service modeling" and the "build and compose" entities are realized
by the COMPOSE SDK provided by WP6 with the help of the COMPOSE registry and assisted
composition and recommendation engines provided by WP3.1. The "publish and provision" is
mostly covered in this document and overall is taken care of by WP3.2, with the help of the
WP3.1 registry. "Integrate and deploy" is taken care of by WP3.2, in close collaboration with
"secure and manage" which combines the monitoring aspects of WP3.2 and the security aspects
in WP5.

��� Service Lifecycle Description

This capability enables visualizing the stage where a determined service is at a particular
moment and its temporal evolution, allowing in that way to plan the necessary strategies in
order to achieve the desired developer objectives.

Along the service lifecycle there are certain conditions that must be verified. For example,
before running or stopping a service it must be ensured that the user attempting to execute this
action is actually allowed to perform it. For example, if a user tries to stop a service it must be
guaranteed that he/she is allowed to stop this service; otherwise, companies involved in
COMPOSE could maliciously stop other services in order to influence users to select their
services. This will be described in more detail in section Error! Reference source not
found..The proposed stages of the lifecycle will be the following:

1. Service Provider Catalog: in that stage, developers can visualize the existing and
available services of the system.

2. Authoring: this is the first stage of the service lifecycle and starts when the developers
deliver the files of the new services that have been developed

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

3. Validation: During this stage several validations must take place. Mainly there are two
aspects covered here: service dependencies, and security validations. From the service
dependencies perspective, it must be verified that the COMPOSE run-time can handle
the proposed service. More specifically, service dependencies will be verified, to
guarantee that the system has got all the necessary dependencies to deploy and run the
delivered service in a successful way. From the security point of view, in addition to
the verification of user’s permissions, the information flow component must be used to
determine if there are any information flow patterns which might conflict with security
policies defined by the user who is running the service or by service providers. This
stage has two possible outputs, depending on whether the service has been rejected (4)
or accepted (5).

4. Rejected: if the result of validation stage has not been satisfactory, the service will be
rejected and its flow in the lifecycle will be ended.

5. Accepted: if the result of validation stage has been successful, the service will be
approved. The service will flow to the Deployed stage.

6. Deployed: once the service has been approved, it will flow to the deployed stage, in an
initial stopped status. Once deployed, it will be visible for all users or just for those who
have got the necessary permissions, depending on the access and visibility limitations
that have been specified. This stage has got three possible outputs, depending on
whether the service is running (7), upgrading (8) or must be deleted (9).

7. Running: once the service has been correctly deployed, it will flow to the Running
stage. If a service is stopped, the system will try to find a similar service in order to
guarantee the correct operation of the services which have dependencies on the stopped
one. It will remain in this stage until the decision to stop the service, returning back in
this way to the Deployed stage.

8. Upgraded: when a new version or update or a re-configuration of an existing service
has been developed, the service will flow to the Upgrade stage where the new version
will replace the older one. Once the service has been upgraded, it must return back to
the validation stage. Although this is not a new service, it must pass the validation
processes again to verify that the system has got all the necessary dependencies, to
validate its revised content.

�� Deleted: the service will reach this stage once the decision to proceed to its
deactivation and removal has been taken for a determined reason. Once the service is in
that stage, its flow in the lifecycle will be ended.�

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������1����� �

Authoring

Validation

Approved Rejected

Deployed
(stopped)

Deleted

Upgraded

Running

END

Delete

Upgrade Run

Stop

Service Provider
Catalog

�

Figure 6: The COMPOSE Services Lifecycle

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

�� Interfaces for service execution

��� Overview

This section describes the set of interfaces that will allow the management of the lifecycle of
COMPOSE services and dynamically composed services, such as creating services, upgrading,
or deleting.

Interfaces design is done following the standard IEEE Std 830-1998 “Recommended Practice
for Software Requirements Specifications”3 with the aim of defining an unambiguous and
complete specification document.

The interfaces described in this document will be handled by an architectural component named
the COMPOSE controller and will reside within the COMPOSE run-time. The COMPOSE run-
time is an IoT PaaS, resulting from the customization of a general purpose PaaS (Cloud
Foundry) to the specific needs of the COMPOSE platform.

Figure 7: Run-Time architecture
Developers of services within COMPOSE will mainly interact with the COMPOSE controller
during the deployment phase in particular and life cycle management operations in general.
More concretely, the COMPOSE provided SDK will under the covers communicate with the
controller, via the API described below, in order to achieve for the user automatic deployment
and control of their services within the COMPOSE run-time. The run-time provides a Cloud
Controller which is in charge of provisioning and binding of applications for them to be ready to
be deployed. Moreover, it communicates with the cloud stager which prepares the environment
needed for the service to be executable by the execution agents, and passes it on to the execution
agents for the services to be finally deployed and executed. In addition, there are middleware
services deployed within the cloud infrastructure, such as databases, and messaging engines.
Developers of COMPOSE applications can rely on the existence of such middleware services,
and upon deployment of the newly created application the cloud controller will automatically
create the correct binding between the newly created application and the middleware service it

�������������������������������������� �
� ����*?��888�&���������#�	$���"��D��$9&��	1���6333+� ��*"��

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

needs for its proper operation. Internally, the cloud controller employs its own blob store,
storing the application information and some metadata, which among other aspects, maintains
the expected state of the system, which can be used in collaboration with the health manager to
determine whether the system is in a correct state or some alerts need to be communicated.

The COMPOSE controller will serve as a façade to the cloud controller, which will intercept
interaction commands from the SDK to the cloud controller and will add COMPOSE specific
interleaved actions. Besides acting as an adapter to the cloud controller it will serve a role in the
monitoring of COMPOSE components active within the run-time. COMPOSE specific
capabilities which will be supplied via this mechanism include interaction with the COMPOSE
registry which holds information on COMPOSE entities such as services, service objects and
applications, as well as interaction with a security component performing information flow
related analysis.

The COMPOSE controller defined in this deliverable will interact with the service registry
component that is being defined and implemented in WP3.1. The registry stores all the metadata
related to services description (including service objects and applications), including lifecycle
and deployment induced data. The COMPOSE controller will interact with the registry in order
to retrieve existing services, including their description and configurations. In addition, newly
created and deployed services will be inserted into the registry.

All the interfaces defined in this chapter for the COMPOSE project, will have as a reference the
OSLC standard, the design considerations related in the document and the OSLC
specifications4.

��� Interfaces identification

The set of interfaces is divided into different types:

• The interfaces that directly interact with the users (developers, service owners,
COMPOSE administrator & operator). Main interfaces inside this group will be:
o Service Delivery. By using this interface, users can deploy the services to the

COMPOSE platform.
o Service Lifecycle Management: By using this interface, users can manage the

complete lifecycle of the services.
o Service View: By using this interface, users can get the information of the services,

like dependencies, status, and monitoring.
• The interfaces that directly interact with COMPOSE platform components to enable

automatic deployment. These components include the Run-time, repository, monitoring,
and authorization.

������ User Interfaces

These interfaces provide the front end interfaces for the different actors to interact with the
service lifecycle. Those interfaces can be used for service creation and service execution and
service lifecycle administration. Visual interfaces are provided to create new services, edit
existing ones and manage the repository of service components.

Also, administrator users can configure services and deploy them in the runtime environment.

�������������������������������������� �
1�(��?����*?��*��%	���
��	�����/
���
�8� �
��'	#�� ��(*��
�
���
��

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

������� Service Deployment

Service Deployment is an interface via which users can deploy developed COMPOSE services
into the COMPOSE platform. This interface supports developers in the transformation of their
service from a definition to an executable entity, using the Service registry, which is a database
that includes the descriptions of COMPOSE services and service objects. Note that different
kinds of COMPOSE entities are grouped under the same umbrella here, namely services,
applications, and service objects.

������� Service Lifecycle Management

Service Lifecycle Management allows users to manage and use their own COMPOSE services.
The complete lifecycle management of COMPOSE services includes, in addition to service
creation and service execution, the support of the transitions between the different phases of a
service. Such transitions include delivering the service, validating, deploying, running, and
finally, deleting.

Service Lifecycle Management interface has to provide:

• To allow users to decide when and how long their services must be available in the
system.

• To automate the provisioning and deployment of Service Objects and services
(including composite services).

• To enable validating and deploying new services.
• To provide scalable execution in a heterogeneous environment.

������� Service View

This interface provides users the list of the services and their dependencies. Developers can sort
by date and alphabetically, and can perform search operations through the list. Also, service
description detail is provided in order to give more information related to the service, like
owner, creation date, availability, status, etc. This interface can help developers manage their
own deployed services.

������� User management interface

User management interface allows the control and management of the different users and the
information related to them. Authentication, Authorization and Accounting (AAA) information
is also stored in this module. Users are classified in two types:

• Administrators: they can perform any operation and are responsible for the
authentication and authorization of user’s requests.

• Developers: they may access most functionality in order to develop and deploy a
COMPOSE service.

Only the owner of a service can manage it, although developers can share their services to be
used by other users.

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������+����� �

������ COMPOSE platform interfaces

Internal COMPOSE platform interfaces serve as the plug-in point between different components
and thus must be integrated in order to run a complete service lifecycle.

�

Figure 8: LifeCycle Interfaces
One group of interfaces has to communicate with the user’s interface through the SDK, to allow
obtaining the data of the new developed services by users. Another group of interfaces relates to
integration with the COMPOSE run-time5, where these services will be validated, deployed and
hosted. Yet a different group of interfaces will interact with the platform repositories.

In the previous image, the proposed interfaces are shown:

• SDK – Repository: this interface will enable users to visualize, delete and/or get
existing services, depending on the permissions defined for each user.

• SDK – Service Lifecycle Management: this interface will enable developers the
addition of new services to the system. Each service must pass the different Lifecycle
stages before they can be deployed and used. Depending on the permissions defined for
each user, they will have determined functions.

• Repository – Service Lifecycle Management: this interface will enable the
registration of the new services provided by developers, which have passed the different
stages of the Lifecycle.

• Service Lifecycle Management – Run-Time: this interface will enable users to
visualize the deployed services, as well as test, deploy and host the new ones.

������ COMPOSE controller interfaces

The COMPOSE controller interface will consist of the following possible actions. The details
are provided as command line operations but similar capability may be provided via a REST

�������������������������������������� �
� �(������*?��"�	��#�"���"�;��&�"�	�"��&��""
� �%�%	���
�����&#E�������

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

interface. It is assumed that when users are executing these actions they have been authenticated
before. . It is assumed that when users are executing these actions they have been authenticated
before.

• app_info [COMPOSE entity name] - where COMPOSE entity can be a service, service
object or an application. This call with return information about the COMPOSE entity
in question, such as its status, and resources used and bound. Under the covers this
method will call cloud foundry's app (and possibly stats / crashes / health) command
for COMPOSE services and applications and will contact the service objects web server
for a service object.

• delete [COMPOSE entity name] - where COMPOSE entity can be a service, service
object or an application. This command will delete the entity in question, while
communicating with the COMPOSE registry and possibly the service objects web
server in the process. Under the covers this method will call cloud foundry's delete
command.

• deploy [COMPOSE entity name] [Developer] - where COMPOSE entity can be a
service, service object or an application. This command will deploy the entity in
question to the run-time. A service object will be passed on to the service objects web
server. This command will interact with the COMPOSE registry to add the newly
deployed entity specifying also the Developer of the service and the Deploying user for
the service. This command may supply the run-time services that need to be bound to
the currently deploying entity. Under the covers this method will call cloud foundry's
push command.

• map_url [COMPOSE entity name] [url] - where COMPOSE entity can be a service, or
an application, and the url is the one through which the developer wishes his service to
be accessed. Under the covers this method will call cloud foundry's map command.

• register_user [name, pswd] – Will create and register a new platform user account.
Under the covers this method will call cloud foundry's create-user and register
commands.

• rename [old name] [new name] – Will replace the old entity name by the new name.
Will access the COMPOSE registry to update the new name as well. Under the covers
this method will call cloud foundry's rename command.

• restart [COMPOSE entity name] - where COMPOSE entity can be a service, service
object or an application. This command will stop a running entity and will re-start it.
Under the covers this method will call cloud foundry's restart command.

• service_catalog - This call will return information about the COMPOSE entities
residing in the system, including their descriptions. Under the covers this method will
call the COMPOSE registry APIs.

• start [COMPOSE entity name][delay][end] - where COMPOSE entity can be a service,
service object or an application. This command will start a stopped entity and will
associate the user with the running entity. Optional [delay] and [end] parameters can be
used to define when the service should be started or until when to be executed,
respectively. Under the covers this method will call cloud foundry's start command.
Additionally, this action will notify the Reputation Server about the COMPOSE entity
that is running. This information will be used by the Reputation server to assess the
availability of the COMPOSE entity.

• stop [COMPOSE entity name] [Additional_info] - where COMPOSE entity can be a
service, service object or an application. Additional info will be a list of key-value pairs

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

which might be relevant for debugging purposes, error logging or to display errors to
users. For example, this argument could be used by the security runtime monitors to
provide additional information regarding the reason for stopping a service due to a
security conflict between security policies and the service information flow during
execution. This command will stop a running entity. Under the covers this method will
call cloud foundry's stop command. Additionally, this action will notify the Reputation
Server about the COMPOSE entity that has been stopped, as well as the additional
information received as a parameter. These notifications will provision the Reputation
server with valuable information to assess the compliance of the COMPOSE entity with
users policies, and also the availability of the COMPOSE entity during runtime.

• status[COMPOSE entity name] - where COMPOSE entity can be a service, service
object or an application. This command will deliver current status information available
for the entity being queried (executing, stopped, delayed, exited with error, etc).

The COMPOSE services recommendation based on Use Cases interface will consist of the
following possible actions. The details are provided as command line operations but similar
capability may be provided via a REST interface.

• Service_update_endpoint [COMPOSE entity name] [service_endpoint] - The idea is to
have a service for modifying the endpoints of external services (e.g., a meteor service).
It might become common that user-developers wish to simply update the endpoint.

• Service_update_notification [COMPOSE entity name] [user_id][rule][call-back] – An
external app or a difference COMPOSE service (defined by a call-back endpoint) could
be notified about an update in user data (new data recorded, etc.).

• Service_not_updated [COMPOSE entity name][user_id][call-back] – When there is no
interaction with a particular user app, the service could invoke a COMPOSE service or
an external service call-back.

• Service_addAppID [COMPOSE entity name] [App ID] – Allows the specific service to
be accessed by a specific app (web app, mobile app, etc.).

• Service_removeAppID [COMPOSE entity name] [App ID] – Removes the specific app
id from the list of apps that can execute the specific service.

��� Requirements Specification

������ Introduction

Once defined, the interfaces created with their basic features in the previous section and taking
into account that it is necessary to define clearly the other topics named at the stage 4.2.3, then
the requirements are detailed in order to develop these interfaces.

Definition of the interface requirements must respond the following issues:

• Functionality: To describe what is the interface supposed to do.
• Interactions: To describe how are the interactions with users, with the platform, or with

others systems.
• Performance: To describe performance attributes like the speed, availability, response

time, recovery time, etc.

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

• Attributes: To describe other considerations like portability, correctness,
maintainability, security, etc.

• Design constraints imposed on an implementation: To describe if there are any
required standards in effect, implementation languages, policies, resource limits,
operation environments, etc.

������ Assumptions & dependencies

Two types of dependencies of service deployment are:

• Deployment dependencies: classes may require some code that is not contained in the
COMPOSE package. In such case, then it is needed to explain that this code should be
imported.

• Service dependencies: service management at run time includes service publication,
discovery, binding and adaptation with respect to changes due to dynamic availability
(arrival or departure) of services that are being used by a bundle during execution.
Service dependency management is key to building applications, as they are not
guaranteed, or managed. Service dependencies can be declared in the manifest file.
The Cloud Foundry command line tool (VMC) has a feature available called
“manifests”, which describes services in human-editable manifest documents and makes
it easier to automate services deployments.

������ User’s interfaces requirements

In the following chapter, a list of the requirements of each user interface is presented.

������� Service Deployment Interface

Table 1: Service Deployment Interface

SDI-R01 To access to all the service components.

SDI-R02 Minimum information to accept a service for its deployment:

� ID

� Name

� Description

� Resources

� Dependencies

� Availability

� Security level

SDI-R03 The service producer needs an extensible set of service object to compose their

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

services; this set must be authorized for the registered user.

SDI-R04 To warn the service producer when the service is not-viable, this means that the
service has not passed the Validation lifecycle's stage.

SDI-R05 Allowing existing services to be upgraded.

SDI-R06 The interface has to help the service creator to identify the lifecycle’s stage of the
service at any time.

SDI-R07 The interface has to help the service creator to deploy the service into the
platform.

������� Service Lifecycle Management

Table 2: Service Lifecycle Management

SLM-R01 Search services by name from a given list.

SLM-R02 An interface that shows the list of existing services, sorted by date and
alphabetically, and allows the user to search through the list.

SLM-R03 The list of existing services must to display the following fields:

� ID.

� Name.

� Owner.

� Description.

� Status.

� Dependencies.

� Security level.

SLM-R04 In case such service needed by the developers does not exist, then no services
should be showed after executing the search.

SLM-R05 The service must be already created and deployed in the platform before it can be
executed.

SLM-R06 Allowing the user to execute the search by introducing in the corresponding field
one or more words related to the kind of service the user wants to find.

SLM-R07 Interface must support the ability to perform automated deployment.

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

SLM-R08 To provide a mechanism to ensure that services’ dependencies are checked when
a change in a service is done.

SLM-R09 To perform life cycle functions on execution instances of service objects.

SLM-R10 To provide a mechanism to support the configuration, registration and activation
of a service or service objects.

�

�

������� Service View Interface

Table 3: Service View Interface

SVI-R01 Same level filtering requirements as those explained in the SLM requirements.

SVI-R02 Once provided with the list of desired services, users must be able to access the
services related information, such as service description, to get the exact idea of
what each service does and decide whether to subscribe to these services or not.

SVI-R03 To provide an interface that shows the list of existing services, sorted by date and
alphabetically, and allow the user to search through the list.

� �

������� User management Interface

Table 4: User management Interface
UMI-R1 To store in the user profile, for each service, the parameters introduced by the

subscriber.

UMI-R2 To be authenticated before accessing to look up any service.

UMI-R3 Once the search has been executed, and before showing the list of resulting
services, to filter those that the user is not authorized to use.

UMI-R4 To provide a data base of user profiles and the adequate interfaces to access and
retrieve/store such information.

������� SW system attributes

In order to guarantee the correct operation of the system and all its modules, the following
general and no-functional requirements must be established. These requirements are referred in
the document Software Requirements Specifications [1].

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������1����� �

Reliability

This entity represents the (physical/logical) context in which the service that will run is
executed. It is used by the COMPOSE platform to provide/adapt services in order to better meet
the user requirements on the service.

Availability

This entity is part of the context and it contains the description of the resources available at the
service consumer side. In other words it contains specifications about the device the service
consumer uses in his service request. This piece of information about the context in which the
service will run on and it is contained in the service request expressed by the consumer.

Maintainability

This entity models the rules used to adapt a software component to a specific context. The
specified rules make use of the component description in order to suitably adapt the involved
software component(s) to the available context where the software service will run.

This entity models the agreement reached between the service consumer and the service
provider. In practice, SLA is composed from multiple different clauses and each clause
addresses a particular service request requirement. It represents the contracts between them.
Context, Service Request and Service Description influences the procedure that finishes with
the agreement.

�

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

�� Interface Definition

This section contains the REST interfaces for functionalities described as command line
operations in sections 4.2.2 and 4.2.2

Some methods included in this interface definition will accept and return data in JSON format.

All methods described in this section must use proper authentication and authorization
mechanisms in order to ensure that users invoking actions from this API have sufficient
permissions. These mechanisms shall leverage cloud foundry User Account and Authentication
Server (UAA) functionalities Error! Reference source not found., and in order to integrate
COMPOSE Controller with the Cloud Platform. Although UAA is based on OAuth2, which is
an authorization framework Error! Reference source not found., it also includes
functionalities such as Single Sign On, User management and authentication mechanisms.

�

Method
GET /entities?q=[query]&fields=[fields]

Description

Get a list of COMPOSE entities

Parameters

q: (optional query parameter). Query name. Wild cards can be used (*, ?). Name or
partial name of the COMPOSE entity that will be included in the list. If not specified all
entities will be included in the list.

fields: (optional query parameter optional). List of comma separated values of data
to be returned. If not specified, only a subset of fields will be included (See COMPOSE
Entity Resource)

Response

Response body will contain the list of COMPOSE entities that match query criteria.

Response codes

200. Success. Response body contains expected data

401. Missing or Invalid credentials

500. Server Error

Comments

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

Method
POST /entities

Description

Create a new COMPOSE entity

Parameters

Request body: must contain all necessary data to register a COMPOSE entity in the
COMPOSE Registry.

Response

Response body will contain the new COMPOSE entity registered

Response codes

201. Success. Response body contains expected data

400. Some data is missing in the request body

401. Missing or Invalid credentials

500. Server Error

Comments

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

Method
PUT /entities/{eid}

Description

Updates COMPOSE entity identified by {eid}

Parameters

{eid}: COMPOSE Entity identifier

Request body: must contain all necessary data to update a COMPOSE entity in the
COMPOSE Registry.

Response

Response body will contain the new COMPOSE entity updated

Response codes

200. Success. Response body contains expected data

400. Some data is missing in the request body

401. Missing or Invalid credentials

404. Resource not found (Entity {eid} not found)

500. Server Error

Comments

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������+����� �

Method
GET /entities/{eid}

Description

Gets detailed information about COMPOSE entity identified by {eid}

Parameters

{eid}: COMPOSE Entity identifier

Response

Response body will contain detailed information about COMPOSE entity identified by
{eid}

Response codes

200. Success. Response body contains expected data

401. Missing or Invalid credentials

404. Resource not found (Entity {eid} not found)

500. Server Error

Comments

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

Method
DELETE /entities/{eid}

Description

Deletes COMPOSE entity identified by {eid}

Parameters

{eid}: COMPOSE Entity identifier

Response

Response codes

204. Success. COMPOSE entity identified by {eid} has been removed

401. Missing or Invalid credentials

404. Resource not found (Entity {eid} not found)

409. COMPOSE entity can't be deleted due to its state

500. Server Error

Comments

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

Method
POST /entities/{eid}/validate

Description

Tries to validate COMPOSE entity identified by {eid}

Parameters

{eid}: COMPOSE Entity identifier

Request body: Information needed to validate the COMPOSE entity identified by
{eid}. To be defined.

Response

Response body will contain detailed information about the COMPOSE entity validated.

Response codes

200. Success. COMPOSE entity identified by {eid} has been validated. Response body
contains expected data.

401. Missing or Invalid credentials

404. Resource not found (Entity {eid} not found)

409. COMPOSE entity can't be validated due to its state

500. Server Error

Comments

Validation process success (meaning response code = 200) results in a COMPOSE
entity state change to 'Accepted' or to 'Rejected'.

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

Method
POST /entities/{eid}/deploy

Description

Tries to deploy COMPOSE entity identified by {eid}

Parameters

{eid}: COMPOSE Entity identifier

Request body: Information needed to deploy the COMPOSE entity identified by
{eid}. To be defined.

Response

Response body will contain detailed information about the COMPOSE entity deployed.

Response codes

200. Success. COMPOSE entity identified by {eid} has been deployed. Response body
contains expected data.

401. Missing or Invalid credentials

404. Resource not found (Entity {eid} not found)

409. COMPOSE entity can't be deployed due to its state

500. Server Error

Comments

Once deployed the state of the COMPOSE entity becomes 'Deployed - Stopped'

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

Method
POST /entities/{eid}/start

Description

Tries to start COMPOSE entity identified by {eid}

Parameters

{eid}: COMPOSE Entity identifier

Request body: Information needed to start the COMPOSE entity identified by
{eid}. To be defined. Optional information like delay or end parameters can be defined
in the node.

Response

Response body will contain detailed information about the COMPOSE entity started.

Response codes

200. Success. COMPOSE entity identified by {eid} has been started. Response body
contains expected data.

401. Missing or Invalid credentials

404. Resource not found (Entity {eid} not found)

409. COMPOSE entity can't be started due to its state

500. Server Error

Comments

Once started the state of the COMPOSE entity becomes 'Deployed - Started'

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

Method
POST /entities/{eid}/stop

Description

Tries to stop COMPOSE entity identified by {eid}

Parameters

 {eid}: COMPOSE Entity identifier

Request body: Information needed to stop the COMPOSE entity identified by
{eid}. This information will include information regarding the reason for stopping the
service, among other data. Specific format for this data is yet to be defined.

Response

Response body will contain detailed information about the COMPOSE entity stopped.

Response codes

200. Success. COMPOSE entity identified by {eid} has been stopped. Response body
contains expected data.

401. Missing or Invalid credentials

404. Resource not found (Entity {eid} not found)

409. COMPOSE entity can't be stopped due to its state

500. Server Error

Comments

Once stopped the state of the COMPOSE entity becomes 'Deployed - Stopped'

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������1����� �

Method
POST /entities/{eid}/upgrade

Description

Tries to upgrade COMPOSE entity identified by {eid}

Parameters

{eid}: COMPOSE Entity identifier

Request body: Information needed to upgrade the COMPOSE entity identified by
{eid}. To be defined.

Response

Response body will contain detailed information about the COMPOSE entity upgraded.

Response codes

200. Success. COMPOSE entity identified by {eid} has been upgraded. Response body
contains expected data.

401. Missing or Invalid credentials

404. Resource not found (Entity {eid} not found)

409. COMPOSE entity can't be upgraded due to its state

500. Server Error

Comments

Once upgraded the state of the COMPOSE entity becomes 'Upgraded'. If a developer
wants to modify a deployed COMPOSE entity, he must first change its state (via this
method), then modify that entity (via PUT - /entities/{eid}) and begin the validation
cycle again.

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

Method
GET /entities/{eid}/events?q=[query]&fields=[fields]

Description

Gets a list of COMPOSE entity events identified by {eid}

Parameters

{eid}: COMPOSE Entity identifier

q: (optional query parameter). Query name. Wild cards can be used (*, ?). The events
included in the result list must match this query criterion

fields: (optional query parameter optional). List of comma separated values of data
to be returned. If not specified, only a subset of fields will be included

Response

Response body will contain the list of events that match query criteria.

Response codes

200. Success. Response body contains expected data.

401. Missing or Invalid credentials

404. Resource not found (Entity {eid} not found)

500. Server Error

Comments

While COMPOSE entities are in the Service Life Cycle they change their state in
response to user or system orders. All of these changes are recorded and can be queried
by this method.

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

Method
GET /entities/{eid}/events/{tid}

Description

Gets detailed information of the COMPOSE entity event identified by {tid}

Parameters

{eid}: COMPOSE Entity identifier

{tid}: COMPOSE Entity event identifier

Response

Response body will contain detailed information about COMPOSE entity event.

Response codes

200. Success. Response body contains expected data.

401. Missing or Invalid credentials

404. Resource not found ({eid} not found or {tid} not found)

500. Server Error

Comments

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

Method
GET /entities/{eid}/files?q=[query]&fields=[fields]

Description

Gets a list of files associated to COMPOSE entity identified by {eid}

Parameters

{eid}: COMPOSE Entity identifier

q: (optional query parameter). Name of files to be returned. Wild cards can be used (*,
?)

fields: (optional query parameter optional). List of comma separated values of data
to be returned. If not specified, only a subset of fields will be included

Response

Response body will contain a list of all files associated to COMPOSE entity identified
by {eid} that match query criteria

Response codes

200. Success. Response body contains expected data.

401. Missing or Invalid credentials

404. Resource not found ({eid} not found)

500. Server Error

Comments

The product of one COMPOSE entity development is always a list of files. That list of
files must be uploaded to the COMPOSE Registry in order to be deployed to Cloud
Foundry. This method lists all those files.

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������+����� �

Method
GET /entities/{eid}/files/{fid}

Description

Gets detailed information of file identified by {fid}

Parameters

{eid}: COMPOSE Entity identifier

{fid}: file id

Response

Response body will contain detailed information about file identified by {fid}

Response codes

200. Success. Response body contains expected data.

401. Missing or Invalid credentials

404. Resource not found (either {eid} not found or {fid} not found)

500. Server Error

Comments

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

Method
POST /entities/{eid}/files/upload?name=[name]

Description

Creates a new file resource and associates it to COMPOSE entity identified by {eid}

Parameters

{eid}: COMPOSE Entity identifier

name: Name of the file. It should include a full relative path if any

Request body: Complete contents of file

Response

Response body will contain detailed information about the newly created resource file

Response codes

201. Success. Response body contains expected data.

401. Missing or Invalid credentials

404. Resource not found ({eid} not found)

500. Server Error

Comments

This method should be used to upload small files in size (<1MB). To upload larger files
/entities/{eid}/files/uploadbegin, /entities/{eid}/files/uploadblock and
/entities/{eid}/files/uploadcommit should be used.

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� �����1������ �

Method
PUT /entities/{eid}/files/uploadbegin?name=[name]

Description

Starts upload of a file related to COMPOSE entity identified by {eid}

Parameters

{eid}: COMPOSE Entity identifier

name: Name of the file. It should include a full relative path if any

Request body: The first block (chunk) of the file content

Response

Response body will contain a new resource file whose identifier must be used
repeatedly in calls to /entities/{eid}/files/uploadblock until all blocks are transferred.

Response codes

200. Success. Response body contains expected data.

401. Missing or Invalid credentials

404. Resource not found ({eid} not found)

500. Server Error

Comments

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� �����1������ �

Method
PUT /entities/{eid}/files/uploadblock?fileid=[fid]

Description

Uploads a block of a file related to COMPOSE entity identified by {eid}

Parameters

{eid}: COMPOSE Entity identifier

fileid: Identifier of file being uploaded first obtained from a call to
/entities/{eid}/files/uploadbegin.

Request body: The block (chunk) of the file content to upload

Response

Response body will contain information about the number of bytes transferred

Response codes

200. Success. Response body contains expected data.

400. Request body contains wrong information (fileid is not valid or is not found)

401. Missing or Invalid credentials

404. Resource not found ({eid} not found)

500. Server Error

Comments

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� �����1������ �

Method
POST /entities/{eid}/files/uploadcommit?fileid=[fid]

Description

Uploads last block of a file related to COMPOSE entity identified by {eid}

Parameters

{eid}: COMPOSE Entity identifier

fileid: Identifier of file being uploaded first obtained from a call to
/entities/{eid}/files/uploadinit.

Request body: The last block (chunk) of the file content to upload

Response

Response body will contain detailed information about newly created resource file

Response codes

201. Success. Response body contains expected data.

400. Request is invalid (fileid is not valid or is not found)

401. Missing or Invalid credentials

404. Resource not found ({eid} not found)

500. Server Error

Comments

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� �����1������ �

Method
GET /entities/{eid}/files/download?name=[name] or

GET /entities/{eid}/files/download?fileid=[fid]

Description

Downloads the file related to COMPOSE entity identified by [name] or by [fid]

Parameters

{eid}: COMPOSE Entity identifier

name: name of file being downloaded.

fileid: Identifier of file being downloaded

Response

Response body will contain file contents.

Response codes

200. Success. Response body contains expected data.

400. Request body contains wrong information (name or fileid are not valid or are not
found)

401. Missing or Invalid credentials

404. Resource not found ({eid} not found)

500. Server Error

Comments

This method may support HTTP Range Retrieval Requests to download big files.

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� �����11����� �

Method
GET /entities/{eid}/update_endpoint/?endpoint=[url]

Description

Updates the endpoint (URL) of an external service (e.g., a weather data service)
identified by the [eid] and the [url]

Parameters

{eid}: COMPOSE Entity identifier

endpoint: Name of the endpoint to be update, e.g. weather service.

url: The URL of the new endpoint

Response

No response other than the respective response code.

Response codes

200. Success. Response body contains expected data.

400. Request body contains wrong information (input parameters are not valid or are
not found)

401. Missing or Invalid credentials

404. Resource not found ({eid} not found)

500. Server Error

Comments

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� �����1������ �

Method

PUT /entities/{eid}/update_notification/?uid=[userid]

Description

Based on a specific condition (rule) it updates a COMPOSE or an external service
through a given call-back

Parameters

{eid}: COMPOSE Entity identifier

uid: The user or mobile/web app id

Body: A JSON string with structured information about the rule that will generate the
notification and a call-back URL (can be a COMPOSE service or an external one) to be
invoked in case the condition is satisfied

Response

No response data other than the respective response code.

Response codes

200. Success. Request properly received.

400. Request body contains wrong information (input parameters are not valid or are
not found)

401. Missing or Invalid credentials

404. Resource not found ({eid} not found)

500. Server Error

Comments

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� �����1������ �

Method

PUT /entities/{eid}/service_not_updated/?uid=[userid]

Description

Used to invoke a call-back (COMPOSE service or external one) defined by a URL,
when there is no data update to the specific service for a defined period of time

Parameters

{eid}: COMPOSE Entity identifier

uid: The user or mobile/web app id

Body: A JSON string with structured information about the call-back URL (can be a
COMPOSE service or an external one) to be invoked in case no data update has been
performed, and the time interval to wait for data updates.

Response

No response other than the respective response code.

Response codes

200. Success. Request properly received.

400. Request body contains wrong information (input parameters are not valid or are
not found)

401. Missing or Invalid credentials

404. Resource not found ({eid} not found)

500. Server Error

Comments

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� �����1������ �

Method
GET /entities/{eid}/status

Description

Returns the service status (executing, stopped, delayed, exited with error, etc.)

Parameters

{eid}: COMPOSE Entity identifier

Response

JSON representation of the service status. It could also contain additional information about the
status, like exception that caused an error, etc.

Response codes

200. Success. Proper request received

400. Request body contains wrong information (input parameters are not valid or are
not found)

401. Missing or Invalid credentials

404. Resource not found ({eid} not found)

500. Server Error

Comments

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� �����1+����� �

Method

GET /entities/{eid}/add_app/?app_id=[aid]

Description

Adds a specific application (mobile, web app, etc.) to the list of apps that are eligible for
accessing/invoking the specific service.

Parameters

{eid}: COMPOSE Entity identifier

[aid]: The web/mobile app ID

Response

No specific response other than the respective response code.

Response codes

200. Success. App id successfully added.

400. Request body contains wrong information (input parameters are not valid or are
not found)

401. Missing or Invalid credentials

404. Resource not found ({eid} not found)

500. Server Error

Comments

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� �����1������ �

Method

GET /entities/{eid}/remove_app/?app_id=[aid]

Description

Revoke a specific application (mobile, web app, etc.) from the list of apps that are
eligible for accessing/invoking the specific service.

Parameters

{eid}: COMPOSE Entity identifier

[aid]: The web/mobile app ID

Response

No response data other than the respective response code.

Response codes

200. Success. Specific app successfully revoked.

400. Request body contains wrong information (input parameters are not valid or are
not found)

401. Missing or Invalid credentials

404. Resource not found ({eid} not found)

500. Server Error

Comments

Examples

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

��� COMPOSE Entity Resource

Where COMPOSE Entity resource is mentioned in the above interface definition, the following
data must be present:

• UID. Unique identifier for the COMPOSE Entity. Given by system

• Name. Name of COMPOSE Entity

• Description. Description of the COMPOSE Entity

• State. State of COMPOSE Entity. Can be one of these

� Authoring

� Accepted

� Rejected

� Deployed - Stopped

� Deployed - Running

� Upgraded

• Domain. Domain where COMPOSE Entity (Service) could be reached once deployed
and running

• Subdomain. Subdomain if any where COMPOSE Entity (Service) could be reached
once deployed and running

• StartCommand. Command to start COMPOSE Entity once deployed

• Files. List of files which are the real implementation of the COMPOSE Entity. These
are the ones who must be deployed.

• Owner. Owner of the COMPOSE Entity

• Security Level. Contains information about who can use the COMPOSE Entity

• Dependencies. Contains dependencies of the COMPOSE Entity related to services
available in Clound Foundry

��� EVENT Resource

While COMPOSE Entities are inside the Service Life Cycle all state changes issued by API
calls are recorded. Every one of those changes creates an Event Resource with the following
information:

• UID. Unique identifier of the Event

• Time. The time the state change was done

• User. The user responsible for the change

• Description. Description of the event

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

��� FILE Resource

Where FILE resource is mentioned in the above interface definition, the following data must be
present:

• UID. Unique identifier for the FILE Resource. Given by system

• Name. Name of the file. If the implementation of a COMPOSE Entity needs several
files organized in several folders the name must include all possible subfolders.

• Size. Size of file in bytes

• MimeType. MimeType of the file.

�
�
���������	
�������� ������������������������������ ��������������� �!��������� �

�� ��������	
���������
��������	����	���
���������
 �� ������������ �

�� References

[1] IEEE-STD-830-1998: SOFTWARE REQUIREMENTS ESPECIFICATIONS.
[2] http://www.cloudfoundry.com/
[3] http://open-services.net/
[4] Cloud Foundry NG_Technical_Overview.pptx
[5] http://tools.ietf.org/html/rfc6749
[6] http://tools.ietf.org/html/rfc6750
[7] https://github.com/cloudfoundry/uaa/blob/master/docs/UAA-APIs.rst#oauth2-token-

validation-service-post-check-token
�

