
�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(�����*�
� �

Collaborative Open Market to Place
Objects at your Service

D3.1.3.2

Assisted Service Composition Engine – Final
prototype

Project Acronym COMPOSE

Project Title Collaborative Open Market to Place Objects at your Service

Project Number 317862

Work Package WP3.1 Service Management

Lead Beneficiary OU

Editor Lukasz Radziwonowicz FOKUS

Contributor Daniel Schreckling UNI PASSAU

Contributor Marko Vujasinovic INNOVA

Reviewer Benny Mandler IBM

Dissemination Level PU

Contractual Delivery Date 30/04/2015

Actual Delivery Date 30/04/2015

Version V1.0

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(��
��*�
� �

Abstract

The development of applications for the Internet of Things is expected to be characterised by the
need to reuse and integrate various sensors, actuators, applications, and remote services. Those
components of future Internet of Things applications will have to be adequately discovered
among an overwhelming set of potential sources of data and functionality, and they will have to
be combined in an effective yet seamless way.

To this end, the COMPOSE platform provides an Assisted Service Composition Engine which is
in charge of supporting application developers in building such applications. The engine aims
to provide automated support for developers that can, given the semantics of the data available
and the semantics of the data required to be obtained, automatically generate possible
compositions. The final version of the service composition described in this deliverable, is
focused on the integration of the composition engine with other components of the COMPOSE
platform, including the developers’ portal (see WP6), service discovery and service
recommender (see WP3.1), static analysis (see WP5) and trust scorer (see section 2.5).

This deliverable provides a description of the architecture and data workflow for Assisted
Service Composition Engine. In addition it includes detailed information about application
programming interfaces, which enable the interaction between involved components.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(�����*�
� �

Document History

Version Date Comments

V0.1 10/04/2015 Initial version.

V0.2 18/04/2015 Trust Scorer.

V0.3 24/04/2015 Architecture and Workflow, Composition Engine.

V0.4 27/04/2015 Developer Portal, Service Composition

V0.5 28/04/2015 Static Analysis Component

V1.0 30/04/2015 Final version

� �

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(��+��*�
� �

Table of Contents

%��������$$$�
�

#��!'����,����� �$$$���

-�����*���(!����$$�+�

-�����*�.������$$�/�

%���� '��$$$�	�

� � 0����&!������$$���

 � �������%������1�$$$���

$� � %��1�����!�����&�2���*��3�$$$�4�

$
 � #����������������$$$��
�

$
$� � #����������������%�0�$$$����

$� � ����������'���������$$��+�

$�$� � ��'���������%�0�$$��+�

$�$
 � ��'�����������(����$$��/�

$+� �������%��� ������'�������$$����

$+$�� %��1�����!������&��!���������������3�$$$$$$$$$$$$$ $$��4 �

$+$
� %��� ����%�0�$$$�
5�

$/ � .�!������������&��������$$$�
��

� � 6�*��������$$$�
��

List of Figures

��(!����7�%��1�����!����*��1����������'���(�'������ '��������$$$�4�

��(!���
7�����������'���������3���*��3�$$$$$$$$$$$$ $$$����

��(!����7�8���������*����*��������&��(������1������ ����!��&�� �����������'���������$$$$$$$$$$$$$$$$$$��
 �

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(��/��*�
� �

��(!���+7�8���������*����*������������(��1�����!��� ��*��1������������'���������$$$$$$$$$$$$$$$$$$$$$$$$$����

��(!���/7�����������'�����������'��������$$$$$$$$$$ $$��+�

��(!���	7��9�'�����*�������������'���������$$$$$$$$ $$��	�

��(!����7�:���1�����&���'����������������'��������� ��������$$$����

��(!����7���������(��*���'��������������&�����1���� ��������� ������(����*��'�2�/�$$$$$$$$$$$$$$$$$$$��4�

��(!���4���;!���������&�������������!��!����������� ��������'���������$$�
��

List of Tables

.������7�%((��(������*!��������$$$�
+�

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(��	��*�
� �

Acronyms

Acronym Meaning

COMPOSE Collaborative Open Market to Place Objects at your Service

SOA Service Oriented Architecture

API Application Programming Interface

OWL Web Ontology Language

I/O Input/Output

REST Representational state transfer

DAG Directed Acyclic Graph

GUI Graphical User Interface

�

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(�����*�
� �

1 Introduction

A fundamental tenet of COMPOSE, and Service-Oriented Architectures in general, is
facilitating the development of complex software and applications by combining pre-existing,
possibly distributed, software components called services [1]. The resulting software, referred to
in COMPOSE as Workflow, thus reuses existing functionality to provide added-value solutions.
In a nutshell, Workflow may benefit from the data and functionality exposed by sensors,
actuators and local or remote services, e.g., Web Services and Web APIs, to enable the creation
of advanced applications.

The process of combining services to create an application is often referred to as Composition
[1], [2]. Given the potential complexity and effort required for performing this activity, notably
when vast amounts of services are available, dedicated software is typically provided for
assisting developers in composing new applications. Supporting software includes both manual
and automated systems that may assist in the creation of compositions at design-time and/or at
run-time[2]. Manual solutions include typically a tool with a simple Graphical User Interface
allowing developers to easily chain services through a simple point & click interface.
Automated solutions on the other hand apply advanced techniques, e.g., Artificial Intelligence
planning or graph search algorithms, to automatically generate plausible compositions.

The Assisted Service Composition Engine described in this deliverable is an automated
composition engine that also benefits from a friendly end-user interface (see WP6) so that
developers can trigger the generation of compositions and ultimately refine and adapt them to
their liking and requirements. In this manner, developers aiming to create applications over
COMPOSE can quickly and easily generate service compositions without losing the ability to
manually fine-tune their applications if necessary.

The first version of the service composition described in the deliverable “D3.1.3.1 Assisted
Service Composition Engine – First prototype”, focused on supporting the generation of
compositions with a configurable level of semantic compatibility of dataflow—from directly
executable to skeletal plans that may require performing some mediation—exploiting registries
with thousands of services with sub-second average response time. The work builds upon state
of the art solutions and evolves them towards high-performance solutions in highly distributed
settings as necessary for the Internet of Things.

The final version of the service composition component described in this deliverable, is
however, focused on the integration of the composition engine with other components of the
COMPOSE platform, including the developers’ portal (see WP6), service discovery and service
recommender (see WP3.1), static analysis (see WP5) and trust scorer (see section 2.5).

In the remainder of this deliverable we first describe the overall approach followed by the
architecture of the service composition and its main components. We present in detail the
message workflow between involved COMPOSE components during the composition process
and describe the API exposed by the service composition so that other components and

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(�����*�
� �

applications can use it. Finally we include the documentation of static analysis API and detailed
description of the trust scorer for compositions.

2 Overall Approach

Despite the appealing characteristics of service-orientation principles and technologies, the
systematic development of service-oriented applications is considerably hampered by the need
for software developers to devote significant labour to discovering sets of suitable services,
understanding their functionality and interfaces, developing software that overcomes their
inherent data and process mismatches, and finally combining them into a complex composite
process.

Over the years, service composition has received much attention both from industry and
academia and as a result a plethora of tools have been produced ranging from mere graphical
support to completely automated solutions [1]-[3]. Automated composition solutions have
received most attention given their potential benefits. Most of the work in this regard has been
approached as a planning task [2]-[4], which benefits from the formal specification of Web
services inputs, outputs, preconditions, and effects to generate suitable compositions [5]-[9].
Despite the wealth of algorithms and implementations described in the literature, it is
considerably difficult to find robust and scalable solutions one could seamlessly adopt and reuse
within the software development stack.

On the one hand, most of the engines have typically focused on dealing with considerably
complex problem and service descriptions including expressive preconditions and effects. While
advanced, these engines have often been developed as a proof of concept and have paid less
attention to the scalability and robustness of the approach. On the other hand, planning based
solutions, as they have been developed thus far, rely on two main assumptions that are difficult
to ensure—especially as the scale of the deployment envisaged grows. First and foremost, these
techniques rely on the existence of complex preconditions and effects that are seldom found in
semantic Web service descriptions due to their complexity [10]. In fact, out of all the
descriptions of semantic Web services found on the Web, less than 5% include preconditions
and effects [10]. Second, these engines rely, for the most part, on loading the entire set of
services available in memory. This last assumption presents obvious limitations from a
scalability point of view and, most importantly, it requires complete access to the data held by
the registry or registries used, which may well go against the interests of the registry providers.

While research in the area has typically evolved towards dealing with increasing complex
service and problem descriptions, in developing this composition engine we have focused
instead on providing a solution that is scalable and efficient in the scenarios one is likely to
encounter in the Internet of Things. That is in scenarios where thousands of heterogeneous
services seldom described by means of expressive preconditions and effects, are exposed on the
Web through a number of distributed third-party registries. The final prototype introduces the
use of more security-related preconditions and effects in order to benefit from and honour
security-specific axioms that will be generated by the WP5 infrastructure.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(��4��*�
� �

2.1 Architecture and Workflow

The service management work package is based on three main components (see Figure 1):

1. An advanced linked services discovery engine, whose job is to discover distributed and
heterogeneous COMPOSE entities. The service discovery engine is layered on top of a
service registry, which exploits information retrieval and semantic search and storage
technologies.

2. An advanced service recommender system, which is in charge of suggesting new
relevant services based on users’ previous interactions, similarity between services, and
other non-functional properties such as performance, trust, etc.

3. An assisted service composition engine, which is meant to help users create new
composite services by (semi) automatically combining existing services to obtain the
desired functionality. This sub-component, emphasized in Figure 1, is the focus of this
deliverable.

Figure 1: Architecture of the service management components

The service composition engine leverages both services discovery and service recommender
engine.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(���5��*�
� �

This deliverable provides the final prototype architecture and implementation of the service
composition. The objective of the service composition is to provide functionalities for finding
the best compositions according to the criteria that are provided by the user. The core
component of the service composition, composition engine, creates compositions based on
services provided by service discovery and service recommender. The resulted compositions are
additionally and on-user demand filtered and ranked using the static analysis and trust
evaluation mechanisms.

For assisted service composition several COMPOSE components need to interact, starting with
a properly designed user interface that presents feedback of several service compositions steps
to the user, trough the composition engine that is responsible for creating the compositions and
ending with static analysis and trust scorer that allow users to choose the most suitable
composition.

��(!���
 presents the interactions between COMPOSE components during the composition
process:�

1. Through the developers’ portal the user provides required information regarding
the composition’s desired input and output. This data is used by the composition
engine to find matching compositions. Optionally the user sets recommendation
attributes, which are used by the service discovery and recommender to provide,
to the composition engine, only services that match the discovery and
recommendation criteria.

2. The Developer Portal sends a request with the data provided by the user to the
service composition API to start the composition process.

3. Service composition processes the user data and invokes the composition engine.

4. Composition engine starts the composition process by analysing the input and
output parameters provided by the user and requests from the service discovery
and recommender the list of suitable services.

5. The composition engine returns the results, list of the compositions, to the service
composition.

6. Service composition enriches the results to the format required by other
components.

7. The composition results are sent back to the developer portal and forwarded to
the static analysis component.

8. The results of the static analysis are sent back to the developer portal to update
the user interface and also forwarded to the trust scorer.

9. The trust scorer evaluates a level of trust of compositions according to trust
preferences of a user and provides results back to the developer portal.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(������*�
� �

�

�

�

Figure 2: Service composition workflow

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(���
��*�
� �

10. Developer portal displays a list of matching compositions to the user with the
information regarding used services, service security and trust. The user chooses
one of the compositions and opens it in composer where he can edit and adjust it
to his needs.

2.2 Developer portal

The developer portal displays the user interface to collect the composition input parameters,
such as composition input and output types and trust attributes, as well as displays results of the
composition process.

Figure 3 presents part of the developer portal where the user defines composition
input and output types. Additionally, the user can define trust attributes that the
composition should match. After hitting the start button the composition process

begins and goes through all steps presented in the workflow in

��(!���
 .

�

Figure 3: User interface for providing search criteria used by service composition

The results of the composition process are presented to the user as a list with detailed
information regarding created compositions. ��(!��� + shows the service composition results
displayed in the developer portal. Each item on the list displays information about the number of
used services and types of the services used in each particular composition. The results are
sorted based on a rank provided by the compositions’ trust scorer. After double click on the list
item the composition will be opened in the composer, where the user can inspect, edit and adapt

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(������*�
� �

created composition to his needs. The security tab in the composer presents the results of the
static analysis. Each item in the security tab describes one problem found by static analysis. The
item contains a short description of the problem and by clicking the item the corresponding
service in the composition is highlighted.

�

Figure 4: User interface for presenting the results of the service composition

�

2.2.1 Developer Portal API

Service composition is a time consuming process. After the user provides all required
information, the developer portal sends an asynchronous request to the service composition to
start composition process (see ��(!���
). The Developer portal provides an endpoint to receive
the results when they are ready from the service composition, to update the user interface. When
service composition receives partial results from the composition engine, static analysis
component or trust scorer, it forwards the results to the developer portal.

���������		
������	��������
��	�����
��������
���	 ���������
���	������ ���������&��
��'������������!���$�

����������	
�� 7���������. ��7������������<�����

���������
� 7�=�>�

{
“compositionId”: <compositionId>,

 “composition”: <compositionObject>} �
���������
� 7�=�>�

{

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(���+��*�
� �

 “status”: <success/error>,
 “message”: ‘Detailed success or error message’

} �

2.3 Service Composition

��(!��� / presents the internal components of the service composition. Service composition
encapsulates the features that the composition engine provides behind the RESTful interface. It
encapsulates also the interaction between the components involved in the composition process
as presented in ��(!���
 , passing the created compositions to the developer portal and invoking
static analysis and trust evaluation.

�

Figure 5: Service composition components

The source code of the service composition is published as an open source, with Apache 2
License, on a GitHub code management repository: https://github.com/compose-eu/compose-
composition.

2.3.1 Composition API

In order to facilitate the integration of the service composition with other COMPOSE platform
components, it provides an application programming interface.

Data types used by the composition API:

� <inputTypes>, <outputTypes> - concepts used to describe inputs and outputs types of
the services stored in the service registry (see D1.3.1 and D3.1.1.2)

� <recommendationAttribute>, <attributeValue> - recommendation attributes
defined by the service recommender component (see D3.1.2.2)

� <trustAttribute>, <trustValue> - trust attributes defined by the trust scorer (see
section 2.5)

� <compositionObject> - JSON representation of the composition created by
composition engine (see section 2.3.2)�

�

���������		
������	��������
��	�����
���	�������
� ��	���� �������������'�����������������

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(���/��*�
� �

����������	
�� 7���������. ��7������������<�����

���������
� 7�=�>�

{
 “input”:
 [<inputTypes>, ...],
 “output”:
 [<outputTypes>, ...],
 “services”: {
 “recommendation”:

[{ “type”: <recommendationAttribute>, “value”:
<attributeValue>}, ...]

},
“compositions”: {

 “trust”:
[{ “type”: <trustAttribute>, “value”:

<trustValue>}, ...]
}

} �

���������
� 7�=�>�

{
 “composition”: {
 “compositionId”: <compositionId>
 }

} �

���������		
������	��������
��	�����
���	�������
� ��	���������
���	������ ���������&��
��'�������������!����

����������	
�� 7���������. ��7������������<�����

���������
� 7�=�>�

{
 “resultType”: <composition/staticAnalysis/trustSc orer>

“compositionId”: <compositionId>,
 “composition”: <compositionObject>

}

���������
� 7�=�>�

{
“status”: <success/error>,
“message”: ‘Detailed success or error message’

}

2.3.2 Composition Engine

Service composition is the process of finding a composition of viable service invocations that,
given a set of requirements and constraints can lead to the desired or required outcome. The
requirements and constraints may range from the semantics of the data available and required,

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(���	��*�
� �

to a set of constraints or preferences over non-functional properties (e.g., services should be
secure).

��(!��� 	 shows an example of a service composition including both the requested inputs and
outputs. In particular, in this example the user is looking for ways to obtain the weather for his
or her actual location, given his or her actual IP address and some login credentials. On the basis
of this request, the composition engine is in charge of figuring out if there is a possible sequence
of service invocations that could lead from the provided input data, to the required output data.
In the example, a potential process composed of 3 services, e.g., WhoisService,
WeatherAuthService, and WeatherService, together with the corresponding dataflow definition
is found. The process in the figure exploits the semantics of the data exchanged in order to
ensure that services are invocable. Notably, the engine exploits the fact that a Country isA Place
and therefore knows that WeatherService would be invocable using directly the Country
obtained in the previous invocation of the WhoisService.��

�

�

Figure 6: Example of a service composition

An important part of the process of defining the data flow and figuring out the potential
sequence of invocable services involves checking the compatibility between inputs and outputs
of services. This process often referred to as matchmaking is typically contemplated in semantic
service discovery activities and generally includes different degrees of compatibility [11]:

� Exact: the output of a service is of a semantic type that is equivalent to that of the input
of the subsequent service.

� Plugin: the output of a service is a sub-concept of the input of the subsequent service.
� Subsume: the output a service is a super-concept of the input of the subsequent service.
� Fail: none of the previous matches are found between the service’s output and inputs.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(������*�
� �

�

Figure 7: Graph-based semantic service composition process

Graph-based approaches constitute a common strategy for tackling the composition problem
where nodes in the graph represent services and edges represent input-output matching between
them. The kinds of input-output matching that are acceptable (e.g., Exact, Plugin, etc.) is a
configurable aspect, although only Exact and Plugin matches can ensure direct compatibility,
and are therefore the only ones typically contemplated. ��(!��� � provides the overview of the
approach adopted within the Composition Engine, which adopts a graph-based approach.

Graph-based approach, internal software component of the composition engine, Java API’s and
integration with service discovery are described in details in first version of this deliverables
(“D3.1.3.1 Assisted Service Composition Engine – First prototype”).

����������	��
����
The result of the composition engine is a graph that contains all possible compositions
according to user criteria. The Java representation is transformed into a JSON object that is
supported by the developer portal, static analysis component and trust scorer. The Composition
object extends the format used by the Node-RED to support features provided by COMPOSE
platform components. It adds the following properties to the JSON document:

� compositionID – unique id of the composition
� composition – JSON object that represents the composition provided by the

composition engine
� compose_type – type of the service used in the composition
� compose_id – id of the service used in the composition and stored in the service registry

The following listing presents a sample composition created by the composition engine. This
composition is based on the example showed in ��(!���	 and is built using the three following
services - WhoisService, WeatherAuthService, and WeatherService:

{
 "compositionId": "aaf57dc2-7e16-4945-9a5d-2515 194c59ca",
 "composition": [

Graph-Based
Optimizations

Comp.
Request

Optimal
Composition

Search

Search
Optimizations

Input/Output
service composition

description

Service Registries

Concept
Matchmaking

Composition
Graph

Generation

Service
Discovery

Optimal
Composition

Workflow
Optimized composition

graph

Semantic
Reasoner MATCHMAKING / DISCOVERY

Composition Graph

GRAPH-BASED COMPOSITION

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(������*�
� �

 {
 "id": "623fc1a3.9dc04",
 "type": "compose",
 "name": "Whois service",
 "compose_type": "service",

 "compose_id":
"http://iserve.kmi.open.ac.uk/iserve/id/services/3c 3f76e4-9394-4ad6-
9438-1bdbb402803f/WhoisService",

 "outputs": "2",
 "x": 331,
 "y": 260,
 "z": "c85e23f.f37a1e",
 "wires": [
 [
 "c5a16a70.3a5e98"
],
 [
 "c5a16a70.3a5e98"
]
]
 },
 {
 "id": "959b6ced.6a649",
 "type": "compose",
 "name": "Wheather Auth Service",
 "compose_type": "service",

 "compose_id":
"http://iserve.kmi.open.ac.uk/iserve/id/services/36 28d62ef-9a32-4f90-
b82a-126e3e45e1b7/WheatherAuthService",

 "outputs": 1,
 "x": 332,
 "y": 413,
 "z": "c85e23f.f37a1e",
 "wires": [
 [
 "c5a16a70.3a5e98"
]
]
 },
 {
 "id": "c5a16a70.3a5e98",
 "type": "compose",
 "name": "Weather service",
 "compose_type": "service",

 "compose_id":
"http://iserve.kmi.open.ac.uk/iserve/id/services/77 e92bfd-4a2b-44e3-
85cc-0785f89623de/WheatherService",

 "outputs": 1,
 "x": 636,
 "y": 329,
 "z": "c85e23f.f37a1e",
 "wires": [
 []
]
 }
]
 }

2.4 Static Analysis Component

The graph composition approach explained in the last section will generate compositions
satisfying the input and output requirements. However, entities used in these compositions and

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(���4��*�
� �

the data processed by them are also subject to security policies. As a consequence, some
compositions may not be compliant and their execution may be prevented by the dynamic
security enforcement in COMPOSE. As a consequence, the set of feasible compositions will be
filtered by the static analysis component. To reduce the performance impact of the complex
security analysis on the composition engine and to also allow security experts to disable this
post-filtering step, we did not directly integrate our component in the composition engine.

The static analysis component developed in WP5 is depicted in���(!���� . The remainder of this
section briefly describes the internal functionalities of the analysis component and specifies the
API with which the composition engine is able to interact with this component. More details on
the internals and operation of this component will be available in deliverable D5.4.1.

2.4.1 Architectural and Functional Overview

After the composition engine has delivered feasible compositions, the set of flows is first
delivered the flow analysis. Similar to symbolic execution, the flow analysis components
analyses the generation and flow of data in the composition through the propagation of security
policies between single service objects and applications.

�

Figure 8: Filtering of compositions based on the static analysis engine from WP5

To statically validate the compliance of information flow, the analysis tries to retrieve so called
contracts from a contracts store. In case, a specific application has not been validated yet, e.g. a
new application has been added since it has been checked, the source code has been modified,
or the composition engine has generated a new composition, the flow analysis triggers a new
intra-application analysis. This either starts another flow analysis, if the application to be
analysed is another composed application, or we analyse a Node-Red node. In the latter case,
the static analysis runs an extended version of TAJS on the JavaScript code of a node to

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(��
5��*�
� �

generate the required contract. This contract is delivered to the flow analysis by storing it in the
contracts database.

During the flow analysis, propagation of flow policies can generate conflicts. They are triggered
by flow policies which reach the input or output of COMPOSE entities at which pre- or post-
conditions do not hold respectively. The flow analysis generates a report in which these
conflicts are reported. This report is a JSON document with a very similar format of the original
Node-RED flow. However, instead of describing a composition, this document provides a list of
conflicting flows, the non-compliant locks causing the conflict, and a user-friendly description
of the problem. The conflict reports generated in the last step and the original compositions are
sent to the composition reconfiguration component.

Now, all flows are checked for the conflicts determined by the flow analysis. The composition
reconfiguration applies methods from planning and constraint satisfaction to find security
services which can remove the conflicts identified above by satisfying closed locks (unsatisfied
conditions) at selected and optimized locations in the composition. An instrumentation engine
can further deploy in-lined reference monitors into user-deployed JavaScript code to support
conflict resolution if inter-procedural reconfigurations are insufficient if critical flow paths are
generated inside a deployed node.

After the set flows has passed these checks, they are passed back to the service composition
component which will then use the additional information generated by the static analysis
component to rate and rank the various compositions (see next Section) and also support the
user in fixing functionally feasible but security-wise non-compliant compositions.

2.4.2 Analysis API

The static analysis component offers a very simple interface which consists of one single call. It
accepts a set of application flows and triggers the analysis of all flows contained in it. As the
analysis may require non-negligible time this call is asynchronous. In the following, we describe
the specifics of this call.

������������
�� POST �

������������� http://<host.domain:port>/ifa/check/ �

����������	
�� 7�Content-Type:application/json �

���������
� 7�JSON

[
 <compositionId, composition>,

 <compositionId, composition>,
 …

]

We expect a list of flow descriptions (in Node-RED format) describing compositions obtained
from the composition engine (see Section 2.3.1). All compositions carry a unique identifier.
This triggers the analysis for each single composition. After the analysis is finished the result is

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(��
���*�
� �

communicated back to the composition component using the endpoint indicated in Section
2.3.1. The results sent to this endpoint have the following JSON format:

{ “resultType” : “staticAnalysis”, <checkResult> }

It specifies that this result was generated by the static analysis component and contains the
composition ID (compositionID) to which the result refers to, a list of security problems
(conflicts) discovered in the composition and a proposal on how to remove or mitigate such
conflicts:

{ <compositionID>, <conflicts>, <fix> }

Conflicts are described in the following way. They are associated with an ID (conflictID), a
formal description of the conflict (conflictDescr), i.e. a trace in the original composition flow
annotated with non-compliant locks and an informal description of the error to be displayed in
the user interface.

{
 conflicts : [
 { <conflictID>, <conflictDescr>, <description> } ,
 { <conflictID>, <conflictDescr>, <description> } ,
 …]

}

The conflictDescr attribute is an extension of the original Node-RED flow description. Every
node obtains the extra attribute conflictRules which contains a set of flow rules (see also
Deliverable D5.4.1) describing a conflict concerning the access to a node. In case there are non-
compliant flows within a composition, there is also an attribute conflictWires which lists non-
compliant wires, i.e. it lists a set of lock rules for each wire which are not compliant and need to
be resolved.

The fix attribute of the object contains another Node-RED flow description which can be used
to replace the original composition as it removes the existing security conflicts. If this attribute
is not defined, there is no possible fix for the detected security problem.

Currently, the API for the static analysis component is only accessible internally. However,
towards the end of the project, it may also be turned into a public interface as it can also support
developers which are not only implementing applications with the developers portal but are
using widely spread and popular IDEs and SDKs.

2.5 Trust Scorer and Filter

A trust evaluation engine is deployed as a post-filter to the assisted service composite engine
results. It takes the result of the composite engine, evaluates a level of trust of the compositions
according to the trust criteria set by a user, and if required, it filters out the compositions which
do not meet the trust level threshold.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(��

��*�
� �

There can be two levels of interactions between the trust engine and the assisted service
composite engine. First, on the compositions’ constituent services level, and second, on the
compositions level.

Obviously, it is favourable for a simple service with a higher trust score to become a constituent
service of a composition, thus, to enhance the trustiness of the composition.. Another strategy is
to let services join a composition, and afterwards rank compositions by trustiness computed
either at the composition level or at the level of each constituent service. �

In particular, the Service Recommender’s Trust Filter and Scorer prototyped in the scope of
WP3.1-T3.1.2 can be directly used to discover trustworthy services for compositions or to
compute a trust score of each constituent service of the compositions, during design time. In this
deliverable, we focus on trust computed at the compositions level.

The trustiness of composition (i.e. global trust) is an evaluated expectation that a user of the
composition has about it in a particular use context, before the composition is used. This is
similar to the notion of trust of a simple service, which we elaborated in D3.1.2.1/2. Trust is a
multifaceted concept and because a perception of what is trustworthy, and what is
untrustworthy, may be different from one user to another, from one context to another, we
developed a trust criteria-driven engine for evaluating the trustiness of compositions.

The criteria for evaluating the trustiness of a composition are actually a list of trust-required
attributes of the composition and of its constituent services. . Weights can specify each attribute
importance in a use context. A user specifies a trust criterion of his/her choice and our prototype
evaluates the trustiness of compositions according to that criteria. The trust ontology we
developed (D3.1.2.1, D1.3.2) serves for capturing, at a higher level of abstraction, trust
expectations of users and also trust-related aspects of services. In a nutshell, we apply a
multiple criteria decision making technique to the compositions trust evaluation problem.

Importantly, the computation of the trust score is determined not only by the trust criteria, but
also by the invocation relations between constituent services1 that are composed into a
composition [12, 13]. Depending whether the composition has a sequential invocation structure
or there might be also parallel invocations, the function for aggregating values of trust attributes
(e.g. reputation) is different, as we explain below.

As an example, assume a composition of three services WhoIsService (S1),
WeatherAuthService(S2), and WeatherService(S3) that provides weather information using a
user’s IP address and user’s credentials as an input. Then, assume a user who establishes his/her
trust to the composition depending on a global reputation of the composition. If S1 to S2 to S3
invocations are sequential, the global reputation of the composition may be computed as an
arithmetic mean of the S1, S2, and S3 reputation scores, as proposed in [13]. However, if S1 and
S2 are executed in a parallel, and then sequentially S3, the reputation of the composition can be
assumed to be an arithmetic mean of two values; first, the minimum of S1 and S2 reputation
scores, and second, S3 reputation score, as proposed in [13].

���
� �COMPOSE applications and external services such as public APIs

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(��
���*�
� �

Despite the amount of different invocation and control structures2, the COMPOSE Assisted
Service Composition Engine only provides compositions with sequential and parallel invocation
relations3 [14]. Therefore, the prototype is limited to compositions with sequential invocation
relations (e.g. S1 and S2 in the Figure 9, or S2 invocation to the S3-S4 structure in the same
Figure) and parallel invocation relations (e.g. S3 and S4 in Figure 9).

�

�

Figure 9 Sequential and parallel structures in a service composition

�

Computation steps - In our approach, a user specifies which attributes (TA) are relevant in the
user’s application context to establish the trust. Those attributes can be a reputation index, user
rating index, popularity index, activity monitoring index4, or some QoS attributes such as
availability or execution duration. (The Trust ontology is a light-weight knowledge base about
those trust dimensions, their types and associated metrics.)The trust engine fetches the values
(�) of those attributes (either from its internal storage or from other COMPOSE components
thought APIs e.g. Reputation Server API) and normalizes them to a number in a range 0 to 1.
For attributes that are quantitative, numerical, such as popularity or availability, we use relations
(1a) and (1b).

The relation (1a) is for quantitative attributes that have a negative impact on the trust i.e. the
higher the value, the lower the trust, e.g., duration or response time. The (1b) is for quantitative
attributes that have a positive impact on the trust i.e. the higher value, the higher trust score,
e.g., reputation or popularity.�

�� � �� � ��	
 	

�
�

� �

��� �	� ��� 	

� �
��� �	� �

���

	

	 � ��	� �
��� � 	 � �

��� 	 � 	

!	� ��	� �
��� � 	 � �

��� 	
 	 	

		�����?�� @����

���
2 There can be several types of atomic invocation relations between constituent services of composition.
According to [12] those are: sequential invocation, parallel invocation, probabilistic invocation, circular
(loop) invocation, synchronous activation, and asynchronous activation. Some authors, such as [13],
consider also a choice relation between the composed services.
3 The COMPOSE assisted service composition engine provides the desired compositions (the ones that
match the given input-output data interface) as a composition graph that captures all potential composite
services in a number of sequential layers. Invocation relation between services across different stages of
the workflow is also sequential, however, every layer may capture the services that can be executed in
parallel at that stage of the workflow [from Deliverable D3.1.3.1].
4 WP5 components provide values for these attributes of the services.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(��
+��*�
� �

�� � �� � ��	
 	

�
�

� ��� 	�	� �

���

� �
��� �	� �

���

	

	 � ��	� �
��� � 	 � �

��� 	 � 	

 	� ��	� �
��� � 	 � �

��� 	
 	 	

��������� !" � 			�

�

for each �� �	 (1� j� m; m - number of trust attributes in a criteria) of each constituent service

#�	of a composition (1� i� n). � ��� is the value of a trust attribute �� �	 of a constituent service #�	$

� �
��� is the maximal [possible] value of a trust attribute, while � �

��� is the minimal [possible]

value of a trust attribute.

If the trust evaluation needs to take into account attributes that are descriptive rather than given
as quantified, e.g. a Certificate Authority or Security Guaranties such as Authorization or
Confidentiality details, then these are evaluated using the trust scoring approach which we
presented in D3.1.2.1 and which is based on a semantic similarity measure in a 0 to 1 range.

Then, after all the values are normalized, we apply aggregation functions �%%�&' (����� �) 	on
these normalized values. We use the aggregation functions proposed in the work [12]. Table 1
shows some of the presented aggregation functions. The aggregation functions can be expanded
to cover additional attributes according to the user’s requirements (e.g. to include Reliability,
Price, etc.).�

Table 1: Aggregation functions

 Popularity/User Rating/Activity
Monitor/Reputation/ResponseTime

Availability* Descriptive (e.g.
Certificate Authority,
Security)

Sequential
structure
� +, �+- $$	+. �

!
/

	0 1 �� � �� � �

�

�2,

 3 �� � �� �
�

�

� 2 ,

!
/

	0 1 �� � �� � �

�

�2,

Parallel
structure

� +, 0 +- 0 $$0 +. �

4�/ � �� � �� �
�
� 4�/ � �� � �� �

�
 4�/ � �� � �� �

�

�

Finally, by applying a relation (2) we calculate the trust score of a composition. The score is a
value in a range 0 to 1; a higher score means higher trustiness of a composition i.e. higher match
to the user’s trust perception.

#5678� �79:; �
 	
< (=>�?@A(BC�) 	0	C??��D�E��BC � ��)�

�FG			

< 				=>�?@A	�BC� ��
�FG

		�?
@�

���
5 Assuming the availability value is taken as probability, then the probability that both S1 and S2 service
are available is equal to the product of each service viability value.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(��
/��*�
� �

Prototype implementation - the trust scorer is implemented as a web service so that it can be
invoked and integrated with other components through its Restful API. Please note that the trust
scorer and filter prototype is also reported in deliverables D.3.1.2.1/2, but their focus was on
simple services trust, while in this deliverable the focus is on the service compositions trust. The
API offers the following operations for dealing with the trustiness of compositions:�

���������		
������	��������
��	��	���	����������
� ��	� ������!���������(���&�������(��*�
��'����������

����������	
�� 7���������. ��7�����������<�����

���������
� 7�=�>�

{

 "resources": [{ <compositionID, compositionFlow Descr>,
<compositionID, compositionFlowDescr> .. <compositi onID,
compositionFlowDescr>}],

 "parameters": {

 "attributes": [<type, importance>, <type, importance> .. <type,
importance>] }

} �

A field “resources” is an array of identifiers of compositions and theirs descriptions (Node-Red
flows in JSON format) that are input for the trust scoring. The “attributes” is a specified trust
criteria, as an array of desired trust-related attributes and their weights. A vocabulary for the
attributes is defined in the COMPOSE Trust ontology, and “type” refers to concepts in that
ontology.

An example request body7�

{
 "resources": [
 {
 "compositionId": "composition_1",
 "composition": Node-Red JSON Flow here..
 },
 {
 "compositionId ": "composition_2",
 "composition ": Node-Red JSON Flow here..
 },
 {
 "compositionId ": "composition_3",
 "composition ": Node-Red JSON Flow here..
 }
],
 "parameters": {
 "attributes": [
 {

 "type": "http://www.compose-
project.eu/ns/web-of-things/trust#ProviderWebReputa tionBy3rdParty",

 "importance": 1
 },

 {

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(��
	��*�
� �

 "type": "http://www.compose-project.eu/ns/web -
of-things/trust#NumberOfCompositions",
"importance": 1
 }

]
 }

}

Response - Content-Type:application/json; Status code: 200

{ "success": "true", "result": [<compositionId, sco re, rank>,
<compositionId, score, rank>… <compositionId, score , rank>]}

where “result” is an array of <compositionId, score, rank> attributes that contain an identifier
of composition sent to the trust scorer (field “compositionId”), its trust score (field “score”) and
its rank (field “rank”). The ranking is by the trust score, from highest to the lowest. An example
response body7��

{
"success":"true",
"result":[
 {"compositionId":"composition_1","score":0.9,"ran k":1},
 {"compositionId":"composition_2","score":0.85,"ra nk":2},
 {"compositionId":"composition_3","score":0.4,"ran k":3}
]}

�

���������		
������	��������
��	��	���	��� 	������
 ���	��	������ �� ������*�������(��*��1��
��'����������!���(�����!����������1���1��&�?������� 5$/@������*������

Request Header: Content-Type:application/json

Request Body: Same as the above.

Response - Content-Type:application/json; Status code: 200

{
 "success": "true",
 "result": [<compositionId>]
}

where “result” is an array of identifiers of compositions that have been evaluated as trusted by
the filter. An example response body7��

 {
 "success": "true",
 "result": ["composition_1", "composition_2"]
}

In a case of error, a JSON response is produced:

Response - Content-Type:application/json; charset=UTF-8; Status Code: 500

{
 "success" : "false",
 "message" : "error message text"
}}

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(��
���*�
� �

Source code is published as open source, with Apache 2 License, on a GitHub code
management repository (http://goo.gl/cSeoHn).

� �

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$�$�$
�%������&�����������'�����������(����)����� �������� ����� ��(��
���*�
� �

3 References

A�B� �$� �$� ����C�(��!D� �$� .�������D� �$� #!��&��D� ��&� �$� -� '���D� E��������������&�
��'�!���(7��������*��1��%�����&�6������1��1�����(�� DF�������� D����$�+5D���$���D���$�
��)+/D�
55�$�

A
B� �$�#!��&�����&�2$���1������D�E%��!��� ����3���� ����������'��������DF� ���������������
�
��� � D����$��D���$��D���$��)�5D�
55/$�

A�B� =$� 6��� ��&� G$� �!D� E%� �!��� � �*� %!��'���&� 2��� �� ������ ��'��������� ���1�&�DF� ���
���	���!� ���� ��� �!��� 	�
� ���� "�!���� �������� D� ���$� ����D� ��$� /D� H�����D�
,��&�����(7������(���H������,��&�����(D�
55/D���$�+ �)/+$�

A+B� �$� ��&������D� %$� �1��1D� ��&� =$�#�'��(!�D� E��'�� ���� 2��� ��������DF� ��� �	�
�#� $�
���	���!� ����%�!��&'��� D� ���� �&$D����$�
D� ��$�

D�=$�#�'��(!�D� �$�#�����D� ��&�=$�%$�
,��&���D��&�$������(��D�
5��$�

A/B� �$� I�!��1� ��&� %$� :�����D� E����!������ �*� ������� � ��'��������� �������(� 3��1� 2-��
G����DF� ��������&� ��� �1�� 2��� 0������(����� ��&� 0���� ��(���� %(���� .��1����(�
2����1���D�
55	$� 20�0%.�
55	� 2����1���$�
55	� 0���<2 0�<%��� 0�������������
���*���������D�
55	D���$����)�
5$�

A	B� $� ,��C�D� #$� J�����D� �$� >������&�!D� >$� H������� &��D� #$� %��(�������!���D� ��&� 0$�
J��1����D�E%��0���(����&�%������1����%!��'���&���'� �����2�������������'���������
�1��!(1��������(DF� ��� �!����������'(��)))�%�	��	!������ D���$�44D��$��D�
5��$�

A�B� �$� �����D� H$� ������D� #$� 2!D� =$� ,��&���D� ��&� #$�>�!D� E,.>� �������(� *��� 2��� ��������
��'��������� !���(� �,�
DF� ���� ���	���!��� �!���!�(� ��� �!��� 	�
� *'����� �� ����
��&
���
����� D����$��D���$�+D���$����)�4	D���$�
55+$�

A�B� I$� � ����D� �$� ����!���D� %$� %��������D� ��&� >$� �� ��������D� E%!��'���&� &������� D�
������������ ��&� ��'��������� �*� ��'������ 2��� ������� �DF����� ���	���!��� �!���!�(�
��� �!���	�
�*'�������������&
���
����� D����$��D���$��D���$�
�)+	D�
55�$�

A4B� �$�.�������� ��&��$��������D�E%!��'���&���'����� ���� �*���'������2��� ��������� �����
�9��!���������������DF�0���������������'������2���� ��*������DD�
55+D���$���5)�4+$�

A�5B� �$���&���������&�=$�#�'��(!�D�E.�3��&��1��>�9� �2�����*���������7�-����&����������*���
�1��2��� �*�#���DF� ����	&�$� ��� ���	&��������� �!���!� D����$��	D���$���D���$��	4+)
���4D�
5�5$�

A��B� �$� ����!���D� .$� I�3�'!��D� .$� �� ��D� ��&� I$� � � ���D� E��'������ '���1��(� �*� 3���
���������������������DF� %������	���!����+�����,--, D���$����)�+�D�
55
$�

A�
B� -�D� -��D� ��&� K��� 2��($� L.�!��� ����!������ ��� �� '������� ��������� ���������� ��&�
&������� $L������������'�!���(D�
554$����M54$�0���� 0����������������*���������$�0���D�

554$�

A��B� 2!D� G�����D� ��� ��$� L.�!���H���&� �������� ��'��� ������ ��&� ���'�C�����$L� ��*�3����
��(�������(����*�������?%����@D�
5�
��4�1�%�������� *��$�J��$��$�0���D�
5�
$�

A�+B� 6�&��(!�C�����D������D������$�L%������'�����&� ��'��������(����1'�*����!��'�����3���
�������� ��'��������$L� 0������������� =�!����� �*� 2��� ��������� 6������1� ?0=2�6@� 4$
�
?
5�
@7���
5$�

�
�
�

