Collaborative Open Market to Place
Objects at your Service

SEVENTH FRAMEWORK
PROGRAMME

D3.1.3.2

Assisted Service Composition Engine — Final
prototype

Project Acronym
Project Title

Project Number 317862
Work Package

Lead Beneficiary Oou

COMPOSE
Collaborative Open Market to Place Objects at y®envice

WP3.1 Service Management

Editor Lukasz Radziwonowicz FOKUS
Contributor Daniel Schreckling UNI PASSAU
Contributor Marko Vujasinovic INNOVA
Reviewer Benny Mandler IBM
Dissemination Level PU

Contractual Delivery Date 30/04/2015

Actual Delivery Date 30/04/2015

Version V1.0

4555 % & ()

Abstract

The development of applications for the Internéfluhgs is expected to be characterised by the
need to reuse and integrate various sensors, agtsiahpplications, and remote services. Those
components of future Internet of Things applicatiavill have to be adequately discovered
among an overwhelming set of potential sourcesatd end functionality, and they will have to
be combined in an effective yet seamless way.

To this end, the COMPOSE platform provides an ge$iService Composition Engine which is
in charge of supporting application developers inléing such applications. The engine aims
to provide automated support for developers that, gaven the semantics of the data available
and the semantics of the data required to be obthirautomatically generate possible

compositions. The final version of the service amgitppn described in this deliverable, is

focused on the integration of the composition emguith other components of the COMPOSE
platform, including the developers’ portal (see WP&ervice discovery and service

recommender (see WP3.1), static analysis (see \atib)rust scorer (see section 2.5).

This deliverable provides a description of the detture and data workflow for Assisted
Service Composition Engine. In addition it includtetailed information about application
programming interfaces, which enable the interatti@tween involved components.

"HSSS % & ' () (*

Document History

Version Date Comments

V0.1 10/04/2015 Initial version.

V0.2 18/04/2015 Trust Scorer.

V0.3 24/04/2015 Architecture and Workflow, CompiumsitEngine.
V0.4 27/04/2015 Developer Portal, Service Compasiti

V0.5 28/04/2015 Static Analysis Component

V1.0 30/04/2015 Final version

#$$$ %

&

()

Table of Contents

% $PSSEEP SIS PSS S S IR S PP PP PSP PSP PSPPI S P b

#1I
B (I SRR
LR T
% SOSEEEO SO S SO S SO ST ST SO ST SIS ST SIS
0 & SEOSEEESEEEESH S N
%
$ % 1 ! &2 * 335$ITEITTISTETTESSEPTEPEETTIPTEITEITISESSESSSPESSESBHISEISSSHY
$ # SEEEEBEEEREEREEBIA AR AR BB AR AR AR AR RAA R ARARARARAY
$ # % 0 $$$SSSSSSSSSS S AT,

S bbb A A L s
$ ' PPFPPPPSPPSPS PSSP S P HHHSHSHSHSHS

P SSSS353 ST ST TS SSSSSSSSSSSESSSSESS
$$ ' % 0 $$SSSSSSSSSSS BB BB 5 eeeSHSHSHHHHENEN

BEESSESSSSSSIESSSSSBEESSSTSSESSSSS:
$3 1 (SEESSIIITEESSIIIEESIETIESSEIEBIESSSITESSSSSETHESSSIIBEESSSSTSEESSS

$+ % ' $SSSIISEESSIITTEES SRS TSI SSST TS SSTTHESSSTISEE SIS
4 %1 ! & 3$SSTSESSIIS SESTEESTSSTSTESSSSTSEHESSTTEESSSTTSEESSH
$+3 % % 0 S SSSSSSS BB BS EHHHEERS S S S S S S PSS PSS S S S S SSBSSSSSSSSSS

$. & SEESSITTTEESSSSTTSIISEEEEBITTTTESSSSTTTIESSSSSIESSSSTIESSSTTEESS

6% $SESISSEISSTISSSSSSSSSSSHHHS SRNAARRNAL $$% $$$$
List of Figures
(7%1 1 *1 I L N AR A RN T S

¢ 7 ' 3 * 3TEIITTTLLES $IFSSSTEIESSSTI$SSSS

$SEES
(78 & (1 I & ‘ SEEISTEIESTEISSEHS

"THEES % & ' () (+*

(+78 *

(79 *
(7:1 &
¢ 7 (
¢4 &

List of Tables

7 %(((

*|

(1

$$$3555$5$
$$$$555$

$EEHESTESSSTESSHHHHB ST S SIS $SSES

*1 ' $EEEIPSSSTTISS PSS
$SSSTEEIISSSTTEIISSSTT LSS SSS LSS SSSEEEESSSESTESS
ERREREUUERRERUUE BB SR AR ARARAR A SRR
ERRREBRRREAREEARRERRN A A A AN A A RN
(% '2/ $TEIISSSTEEI$SSSEHS
$SEEISSTIS TS SS TS SHHHIHRHSS ST S

"H#HE$S %

&

(

)

(1=

Acronyms

Acronym Meaning

COMPOSE Collaborative Open Market to Place Objatigour Service
SOA Service Oriented Architecture

API Application Programming Interface

OwL Web Ontology Language

110 Input/Output

REST Representational state transfer

DAG Directed Acyclic Graph

GUI Graphical User Interface

#3$$ % &

() (

1 Introduction

A fundamental tenet of COMPOSE, and Service-Orgenfgchitectures in general, is
facilitating the development of complex softwarel applications by combining pre-existing,
possibly distributed, software components calleglises [1]. The resulting software, referred to
in COMPOSE a®Vorkflow thus reuses existing functionality to provide edldalue solutions.

In a nutshell, Workflow may benefit from the datadafunctionality exposed by sensors,
actuators and local or remote services, e.g., ehic®s and Web APIs, to enable the creation
of advanced applications.

The process of combining services to create anicgtign is often referred to @omposition
[1], [2]. Given the potential complexity and effagquired for performing this activity, notably
when vast amounts of services are available, dedicaoftware is typically provided for
assisting developers in composing new applicatiSagporting software includes both manual
and automated systems that may assist in the @neaticompositions at design-time and/or at
run-time[2]. Manual solutions include typically aeot with a simple Graphical User Interface
allowing developers to easily chain services thhowg simple point & click interface.
Automated solutions on the other hand apply adwhteehniques, e.g., Artificial Intelligence
planning or graph search algorithms, to automdgicgnerate plausible compositions.

The Assisted Service Composition Engine describedhis deliverable is an automated
composition engine that also benefits from a frignehd-user interface (see WP6) so that
developers can trigger the generation of compastand ultimately refine and adapt them to
their liking and requirements. In this manner, depers aiming to create applications over
COMPOSE can quickly and easily generate servicepegitions without losing the ability to
manually fine-tune their applications if necessary.

The first version of the service composition ddsedi in the deliverable “D3.1.3.1 Assisted
Service Composition Engine — First prototype”, feed on supporting the generation of
compositions with a configurable level of semardmpatibility of dataflow—ifrom directly
executable to skeletal plans that may require peifgg some mediation—exploiting registries
with thousands of services with sub-second averaggonse time. The work builds upon state
of the art solutions and evolves them towards lpigifermance solutions in highly distributed
settings as necessary for the Internet of Things.

The final version of the service composition comgrindescribed in this deliverable, is

however, focused on the integration of the commosiengine with other components of the
COMPOSE platform, including the developers’ po(tde WP6), service discovery and service
recommender (see WP3.1), static analysis (see \AfRb)rust scorer (see section 2.5).

In the remainder of this deliverable we first déserthe overall approach followed by the
architecture of the service composition and itsmme@omponents. We present in detail the
message workflow between involved COMPOSE companduating the composition process
and describe the API exposed by the service coriposso that other components and

"HSSS % & ' () (*

applications can use it. Finally we include thewtoentation of static analysis APl and detailed
description of the trust scorer for compositions.

2 Overall Approach

Despite the appealing characteristics of servigentation principles and technologies, the
systematic development of service-oriented appdinatis considerably hampered by the need
for software developers to devote significant labtiu discovering sets of suitable services,
understanding their functionality and interfacesyveloping software that overcomes their
inherent data and process mismatches, and finallybining them into a complex composite
process.

Over the years, service composition has receivedhmattention both from industry and
academia and as a result a plethora of tools haga produced ranging from mere graphical
support to completely automated solutions [1]-[Butomated composition solutions have
received most attention given their potential beseMost of the work in this regard has been
approached as a planning task [2]-[4], which besdfiom the formal specification of Web
services inputs, outputs, preconditions, and efféatgenerate suitable compositions [5]-[9].
Despite the wealth of algorithms and implementatiatescribed in the literature, it is
considerably difficult to find robust and scalabt#utions one could seamlessly adopt and reuse
within the software development stack.

On the one hand, most of the engines have typidattysed on dealing with considerably
complex problem and service descriptions includirgressive preconditions and effects. While
advanced, these engines have often been develspadeoof of concept and have paid less
attention to the scalability and robustness ofdpproach. On the other hand, planning based
solutions, as they have been developed thus figrpretwo main assumptions that are difficult
to ensure—especially as the scale of the deployerrisaged grows. First and foremost, these
techniques rely on the existence of complex pretiomd and effects that are seldom found in
semantic Web service descriptions due to their dexity [10]. In fact, out of all the
descriptions of semantic Web services found onWeb, less than 5% include preconditions
and effects [10]. Second, these engines rely, Hermost part, on loading the entire set of
services available in memory. This last assumptwasents obvious limitations from a
scalability point of view and, most importantly,réquires complete access to the data held by
the registry or registries used, which may welbgainst the interests of the registry providers.

While research in the area has typically evolvedarals dealing with increasing complex
service and problem descriptions, in developing tomposition engine we have focused
instead on providing a solution that is scalabld afficient in the scenarios one is likely to
encounter in the Internet of Things. That is innsgc@s where thousands of heterogeneous
services seldom described by means of expressasopditions and effects, are exposed on the
Web through a number of distributed third-partyisgges. The final prototype introduces the
use of more security-related preconditions andcedfén order to benefit from and honour
security-specific axioms that will be generatedtry WP5 infrastructure.

"HSSS % & ' () (*

2.1 Architecture and Workflow
The service management work package is based ea thain components (see Figure 1):

1. An advanced linked services discovery engine, wimisés to discover distributed and
heterogeneous COMPOSE entities. The service disg@vmine is layered on top of a
service registry, which exploits information rettééand semantic search and storage
technologies.

2. An advanced service recommender system, whichdeange of suggesting new
relevant services based on users’ previous inieregtsimilarity between services, and
other non-functional properties such as performatnast, etc.

3. An assisted service composition engine, which iamhé& help users create new
composite services by (semi) automatically comlgjréristing services to obtain the
desired functionality. This sub-component, emphekin Figure 1, ishe focus of this
deliverable

Service Management Interfaces
ol . f

Service Composition

)

o

|- 3

1" : -« > =

T3.1.2 -
3

w

Service Recommender

Figure 1: Architecture of the service management gaponents

The service composition engine leverages both @esviiscovery and service recommender
engine.

"H#ESS U & : () (4~

This deliverable provides the final prototype atebiure and implementation of the service
composition. The objective of the service compositis to provide functionalities for finding
the best compositions according to the criteriat @ provided by the user. The core
component of the service composition, compositiogiree, creates compositions based on
services provided by service discovery and semgcemmender. The resulted compositions are
additionally and on-user demand filtered and rankesthg the static analysis and trust
evaluation mechanisms.

For assisted service composition several COMPO3#Epoaents need to interact, starting with

a properly designed user interface that preseetibck of several service compositions steps
to the user, trough the composition engine tha¢sponsible for creating the compositions and
ending with static analysis and trust scorer thHiawa users to choose the most suitable

composition.

(! presents the interactions between COMPOSE comp®dearing the composition
process:

1. Through the developers’ portal the user providegired information regarding
the composition’s desired input and output. Thisds used by the composition
engine to find matching compositions. Optionallg tser sets recommendation
attributes, which are used by the service discoaary recommender to provide,
to the composition engine, only services that mathke discovery and
recommendation criteria.

2. The Developer Portal sends a request with the plateided by the user to the
service composition API to start the compositiongess.

3. Service composition processes the user data anéeswthe composition engine.

4. Composition engine starts the composition procgsaralysing the input and
output parameters provided by the user and reqireststhe service discovery
and recommender the list of suitable services.

5. The composition engine returns the results, lishefcompositions, to the service
composition.

6. Service composition enriches the results to them&br required by other
components.

7. The composition results are sent back to the dpeelportal and forwarded to
the static analysis component.

8. The results of the static analysis are sent badkdadeveloper portal to update
the user interface and also forwarded to the secster.

9. The trust scorer evaluates a level of trust of ocositipns according to trust
preferences of a user and provides results backhéo developer portal.

"#$$S % & ' () (5*

P00 UL ULJ0L0L) QLI 0]

| Gosios Dlnoowsnp? |
e |

TR g

g

A ISR

(A T T i TN T

T AT S O R A BT B \T\ﬁ
4

VRN T) LD N WLR T

i

N

Figure 2: Service composition workflow

2 0 01 10 0 0 S0 1 0 0 0 0 0 10 D0 01 0 0 1 o T)

MRS

#$$$ %

&

)

10. Developer portal displays a list of matching conipmss to the user with the
information regarding used services, service sgcarid trust. The user chooses
one of the compositions and opens it in composeargrhe can edit and adjust it
to his needs.

2.2 Developer portal

The developer portal displays the user interfaceditect the composition input parameters,
such as composition input and output types and attisbutes, as well as displays results of the
composition process.

Figure 3 presents part of the developer portal whex the user defines composition

input and output types. Additionally, the user candefine trust attributes that the

composition should match. After hitting the start utton the composition process
begins and goes through all steps presented in therkflow in

@

websocket Found 4 compositions

serial

tcp

udp Processing. Cancel

Figure 3: User interface for providing search criteia used by service composition

The results of the composition process are predetdethe user as a list with detailed
information regarding created composition§. + shows the service composition results
displayed in the developer portal. Each item onighelisplays information about the number of
used services and types of the services used im gaticular composition. The results are
sorted based on a rank provided by the compositiounst scorer. After double click on the list
item the composition will be opened in the comppadrere the user can inspect, edit and adapt

"HSSS W & ' () (*

created composition to his needs. The securityirtahe composer presents the results of the
static analysis. Each item in the security tab diess one problem found by static analysis. The
item contains a short description of the problerd by clicking the item the corresponding
service in the composition is highlighted.

Figure 4: User interface for presenting the result®f the service composition

2.2.1 Developer Portal API

Service composition is a time consuming procesderAthe user provides all required
information, the developer portal sends an asymuus request to the service composition to
start composition process (seg¢). The Developer portal provides an endpoint teeiree
the results when they are ready from the servicgposition, to update the user interface. When
service composition receives partial results frdme ttomposition engine, static analysis
component or trust scorer, it forwards the redolthe developer portal.

“compositionld”: <compositionld>,
“composition”: <compositionObject>}
7=>

"HSSS W & ' () (*

“status”: <success/error>,
“message”: ‘Detailed success or error message’

2.3 Service Composition

(! / presents the internal components of the servieeposition. Service composition
encapsulates the features that the compositiomemovides behind the RESTful interface. It
encapsulates also the interaction between the coemp® involved in the composition process
as presented in(! , passing the created compositions to the develppeal and invoking
static analysis and trust evaluation.

Figure 5: Service composition components

The source code of the service composition is phbtl as an open source, with Apache 2
License, on a GitHub code management repositotpsimgithub.com/compose-eu/compose-
composition.

2.3.1 Composition API

In order to facilitate the integration of the see/composition with other COMPOSE platform
components, it provides an application programnmigyrface.

Data types used by the composition API:

<inputTypes>, <outputTypes> - concepts used to describe inputs and outputs type
the services stored in the service registry (se8.Dkand D3.1.1.2)
<recommendationAttribute>, <attributeValue> - recommendation attributes
defined by the service recommender component (8¢ D2)

<trustAttribute>, <trustValue> - trust attributes defined by the trust scoree(se
section 2.5)

<compositionObject> - JSON representation of the composition creayed b
composition engine (see section 2.3.2)

"THESS % & ' () (+*

7=>
{ .
“input”:
[<inputTypes>, ...],
“output”:
[<outputTypes>, ...],
“services”: {
“recommendation”:
[{ “type™: <recommendationAttribute>, “value”:
<attributeValue>}, ...]
h
“compositions”: {
“trust”:
[{ “type™: <trustAttribute>, “value”:
<trustValue>}, ...]
}
}
7= >
{ y
“composition”: {
“compositionld”: <compositionld>
}
}
&
! |
7 4 <
7= >
{ y . .
“resultType”: <composition/staticAnalysis/trustSc orer>
“compositionld”: <compositionld>,
“composition”: <compositionObject>
}
7= >
{
“status”: <success/error>,
“message”: ‘Detailed success or error message’
}

2.3.2 Composition Engine

Service composition is the process of finding a jposition of viable service invocations that,
given a set of requirements and constraints cah teahe desired or required outcome. The
requirements and constraints may range from theasges of the data available and required,

"HSES % & ' () (1+

to a set of constraints or preferences over nogtiomal properties (e.g., services should be
secure).

(! shows an example of a service composition inclyidioth the requested inputs and
outputs. In particular, in this example the usdoaking for ways to obtain the weather for his
or her actual location, given his or her actuahdldress and some login credentials. On the basis
of this request, the composition engine is in charffiguring out if there is a possible sequence
of service invocations that could lead from thevited input data, to the required output data.
In the example, a potential process composed of eBvices, e.g., WhoisService
WeatherAuthServiceand WeatherServigetogether with the corresponding dataflow defaniti
is found. The process in the figure exploits theaetics of the data exchanged in order to
ensure that services are invocable. Notably, tlggnerexploits the fact that@ountryisA Place
and therefore knows thatVeatherServicewould be invocable using directly th@ountry
obtained in the previous invocation of héhoisService

Request inputs Request outputs
IPAddr

Whois
Service

tial Weather

UserCred

Weather
Auth
Service

WeatherAuthToken

Figure 6: Example of a service composition

An important part of the process of defining thaaddow and figuring out the potential
sequence of invocable services involves checkiegctmpatibility between inputs and outputs
of services. This process often referred to as imaé&ing is typically contemplated in semantic
service discovery activities and generally includéfrent degrees of compatibility [11]:

Exact: the output of a service is of a semantic type ivaquivalent to that of the input
of the subsequent service.

Plugin: the output of a service is a sub-concept of ipaiti of the subsequent service.
Subsume the output a service is a super-concept of thatiof the subsequent service.
Fail: none of the previous matches are found betwessdtvice’s output and inputs.

"HSSS % & ' () (*

ﬂ'lpuIJOulpul GRAPH-BASED COMPOSITION Optimal
S

ervice composition - Optimized composition Composition
description Composition Graph graph Workflow
Comp. Composition Optimal
Request Graph gr?r)r?-i??)i: dg}‘o Composition
Generation pumizat Search
PN _/
” ~ 1
g <
- ~
P N)
Concept - Service I O O Search
Matchmaking Discovery O O O Optimizations j
T O
' o© o
Semantic
Reasoner MATCHMAKING / DISCOVERY
j Service Registries

Figure 7: Graph-based semantic service compositigorocess

Graph-based approaches constitute a common strégeggckling the composition problem
where nodes in the graph represent services aresedgresent input-output matching between
them. The kinds of input-output matching that aceeptable (e.g.Exact Plugin, etc.) is a
configurable aspect, although orfixact and Plugin matches can ensure direct compatibility,
and are therefore the only ones typically contetapla (! provides the overview of the
approach adopted within the Composition Enginectviaidopts a graph-based approach.

Graph-based approach, internal software comporfahteccomposition engine, Java API's and
integration with service discovery are describedlétails in first version of this deliverables
("D3.1.3.1 Assisted Service Composition Engine rstHprototype”).

The result of the composition engine is a graph ttentains all possible compositions

according to user criteria. The Java representaganansformed into a JSON object that is
supported by the developer portal, static analysimponent and trust scorer. The Composition
object extends the format used by the Node-REDuppart features provided by COMPOSE

platform components. It adds the following propestio the JSON document:

compositionlD — unique id of the composition

composition — JSON object that represents the composition geavby the
composition engine

compose_type — type of the service used in the composition

compose_id — id of the service used in the composition andestdn the service registry

The following listing presents a sample compositiogated by the composition engine. This
composition is based on the example showed!in and is built using the three following
services WhoisServiceWeatherAuthServicandWeatherService:

{
"compositionld": "aaf57dc2-7e16-4945-9a5d-2515 194¢59ca”,

"composition™: [

"HSSS % & ' () (*

"id": "623fc1a3.9dc04",

"type": "compose”,

"name": "Whois service",

"compose_id":

"http://iserve.kmi.open.ac.uk/iserve/id/services/3c 3f76e4-9394-4ad6-
9438-1bdbb402803f/WhoisService",

"outputs™: "2",

"x": 331,

"y": 260,

"z": "c85e23f.f37ale",

"wires": [

"cbal6a70.3a5e98"
I
[

"cbal6a70.3a5e98"

]
]

"id": "959b6ced.6a649",

"type": "compose”,

"name": "Wheather Auth Service",

"compose_type": "service",

"compose_id":

"http://iserve.kmi.open.ac.uk/iserve/id/services/36 28d62ef-9a32-4f90-
b82a-126e3e45e1b7/WheatherAuthService",

"outputs™: 1,

"Xx": 332,

"y": 413,

"z": "c85e23f.f37ale",

"wires": [

"c5al6a70.3a5e98"
]
]
2
{

"id": "cbal6a70.3a5e98",

"type": "compose”,

"name": "Weather service",

"compose_id":

"http://iserve.kmi.open.ac.uk/iserve/id/services/77 e92bfd-4a2b-44e3-
85cc-0785f89623de/WheatherService",

"outputs™: 1,

"x": 636,

"y": 329,

"z": "c85e23f.f37ale",

"wires": [

1

2.4 Static Analysis Component

The graph composition approach explained in thé sastion will generate compositions
satisfying the input and output requirements. Hoeveentities used in these compositions and

"HSSS % & ' () (*

the data processed by them are also subject taityepolicies. As a consequence, some
compositions may not be compliant and their executnay be prevented by the dynamic
security enforcement in COMPOSE. As a consequéheeset of feasible compositions will be
filtered by the static analysis component. To redtlee performance impact of the complex
security analysis on the composition engine andl$¢o allow security experts to disable this
post-filtering step, we did not directly integrater component in the compaosition engine.

The static analysis component developed in WP®jsctked in (! . The remainder of this
section briefly describes the internal functioneditof the analysis component and specifies the
API with which the composition engine is able teenact with this component. More details on
the internals and operation of this component éllavailable in deliverable D5.4.1.

2.4.1 Architectural and Functional Overview

After the composition engine has delivered feasiienpositions, the set of flows is first
delivered the flow analysis. Similar to symboliceention, the flow analysis components
analyses the generation and flow of data in thepamition through the propagation of security
policies between single service objects and apipics.

Figure 8: Filtering of compositions based on the atic analysis engine from WP5

To statically validate the compliance of informatitbow, the analysis tries to retrieve so called
contracts from a contracts store. In case, a spepplication has not been validated yet, e.g. a
new application has been added since it has bestketl, the source code has been modified,
or the composition engine has generated a new csitigpy the flow analysis triggers a new
intra-application analysis. This either starts apotflow analysis, if the application to be
analysed is another composed application, or wé/sma Node-Red node. In the latter case,
the static analysis runs an extended version ofSTAd the JavaScript code of a node to

"R %N & : () (4

generate the required contract. This contract liseted to the flow analysis by storing it in the
contracts database.

During the flow analysis, propagation of flow padis can generate conflicts. They are triggered
by flow policies which reach the input or output@OMPOSE entities at which pre- or post-
conditions do not hold respectively. The flow as#dygenerates a report in which these
conflicts are reported. This report is a JSON doenimwith a very similar format of the original
Node-RED flow. However, instead of describing a position, this document provides a list of
conflicting flows, the non-compliant locks causitig conflict, and a user-friendly description
of the problem. The conflict reports generatedchim last step and the original compositions are
sent to the composition reconfiguration component.

Now, all flows are checked for the conflicts detared by the flow analysis. The composition
reconfiguration applies methods from planning amdstraint satisfaction to find security
services which can remove the conflicts identiidve by satisfying closed locks (unsatisfied
conditions) at selected and optimized locationghan composition. An instrumentation engine
can further deploy in-lined reference monitors inser-deployed JavaScript code to support
conflict resolution if inter-procedural reconfigticms are insufficient if critical flow paths are
generated inside a deployed node.

After the set flows has passed these checks, treepassed back to the service composition
component which will then use the additional infation generated by the static analysis
component to rate and rank the various composit{sas next Section) and also support the
user in fixing functionally feasible but securitys& non-compliant compositions.

2.4.2 Analysis API

The static analysis component offers a very sinmitrface which consists of one single call. It
accepts a set of application flows and triggersahalysis of all flows contained in it. As the

analysis may require non-negligible time this tsynchronous. In the following, we describe
the specifics of this call.

POST
http://<host.domain:port>/ifa/check/
TContent-Type:application/json

7JSON
<compositionld, composition>,
<compositionld, composition>,
]
We expect a list of flow descriptions (in Node-REd®mat) describing compositions obtained

from the composition engine (see Section 2.3.1).cAmpositions carry a unique identifier.
This triggers the analysis for each single compmsitAfter the analysis is finished the result is

"#$$S % & ' () (5*

communicated back to the composition componentguiire endpoint indicated in Section
2.3.1. The results sent to this endpoint havedheviing JSON format:

{ “resultType” : “staticAnalysis”, <checkResult> }

It specifies that this result was generated by dtagic analysis component and contains the
composition ID ¢ompositonid) to which the result refers to, a list of securfiyoblems
(confiicts) discovered in the composition and a proposal @n to remove or mitigate such
conflicts:

{ <compositionID>, <conflicts>, <fix>}

Conflicts are described in the following way. Thane associated with an IRofficto), a
formal description of the conflickdnfictbescr), i.e. a trace in the original composition flow
annotated with non-compliant locks and an informasdription ~ of the error to be displayed in
the user interface.

{
conflicts : [
{ <conflictiD>, <conflictDescr>, <description> }
{ <conflictiD>, <conflictDescr>, <description> }

]
}

The conflictDescr attribute is an extension of the original Node-R#®Rv description. Every
node obtains the extra attributenfictRules which contains a set of flow rules (see also
Deliverable D5.4.1) describing a conflict conceghthe access to a node. In case there are non-
compliant flows within a composition, there is akso attributeonflictwires which lists non-
compliant wires, i.e. it lists a set of lock rufes each wire which are not compliant and need to
be resolved.

Thefix attribute of the object contains another Node-REEW description which can be used
to replace the original composition as it removes éxisting security conflicts. If this attribute
is not defined, there is no possible fix for théedéed security problem.

Currently, the API for the static analysis compdnisnonly accessible internally. However,
towards the end of the project, it may also beddrimto a public interface as it can also support
developers which are not only implementing appiicet with the developers portal but are
using widely spread and popular IDEs and SDKs.

2.5 Trust Scorer and Filter

A trust evaluation engine is deployed as a powrfilo the assisted service composite engine
results. It takes the result of the composite emgivaluates a level of trust of the compositions
according to the trust criteria set by a user, ingquired, it filters out the compositions which
do not meet the trust level threshold.

"HSSS % & ' () (*

There can be two levels of interactions between tthet engine and the assisted service
composite engine. First, on the compositions’ dtmett services level, and second, on the
compositions level.

Obviously, it is favourable for a simple servicdtwa higher trust score to become a constituent
service of a composition, thus, to enhance thditress of the composition.. Another strategy is
to let services join a composition, and afterwarask compositions by trustiness computed
either at the composition level or at the leveéath constituent service.

In particular, the Service Recommender’s TrusteFidind Scorer prototyped in the scope of
WP3.1-T3.1.2 can be directly used to discover washy services for compositions or to

compute a trust score of each constituent serditd@eocompositions, during design time. In this
deliverable, we focus on trust computed at the asitipns level.

The trustiness of composition (i.e. global trustlan evaluated expectation that a user of the
composition has about it in a particular use cantbgfore the composition is used. This is
similar to the notion of trust of a simple servieghich we elaborated in D3.1.2.1/2. Trust is a
multifaceted concept and because a perception oétwhk trustworthy, and what is
untrustworthy, may be different from one user tomtaer, from one context to another, we
developed a trust criteria-driven engine for eviilhgpthe trustiness of compositions.

The criteria for evaluating the trustiness of a position are actually a list of trust-required
attributes of the composition and of its constitussrvices. . Weights can specify each attribute
importance in a use context. A user specifies s sriterion of his/her choice and our prototype
evaluates the trustiness of compositions accordinghat criteria. The trust ontology we
developed (D3.1.2.1, D1.3.2) serves for capturiag,a higher level of abstraction, trust
expectations of users and also trust-related aspecservices. In a nutshell, we apply a
multiple criteria decision making technique to tlmenpositions trust evaluation problem.

Importantly, the computation of the trust scorelésermined not only by the trust criteria, but
also by the invocation relations between constituservice$ that are composed into a

composition [12, 13]. Depending whether the compmsihas a sequential invocation structure
or there might be also parallel invocations, thecfion for aggregating values of trust attributes
(e.g. reputation) is different, as we explain below

As an example, assume a composition of three ssrviBVholsService (S),
WeatherAuthServi€8,), and WeatherServid&;) that provides weather information using a
user’'s IP address and user’s credentials as ah ifpen, assume a user who establishes his/her
trust to the composition depending on a global tatn of the composition. If;30 Sto S
invocations are sequential, the global reputatibthe composition may be computed as an
arithmetic mean of the;SS, and S3 reputation scores, as proposed in [13].edewy if § and

S; are executed in a parallel, and then sequentig)lyh® reputation of the composition can be
assumed to be an arithmetic mean of two valuest, fine minimum of Sand $ reputation
scores, and second; eputation score, as proposed in [13].

COMPOSE applications and external services suglubkic APIs

"HSSS % & ' () (*

Despite the amount of different invocation and oonstructure§ the COMPOSE Assisted
Service Composition Engine only provides composgiwith sequential and parallel invocation
relationg [14]. Therefore, the prototype is limited to corsjiions with sequential invocation
relations (e.g. Sand $ in the Figure 9, or Sinvocation to the $£S, structure in the same
Figure) and parallel invocation relations (e.gaBd S in Figure 9).

Figure 9 Sequential and parallel structures in a ggice composition

Computation steps- In our approach, a user specifies which attabuyfA) are relevant in the
user’s application context to establish the trlibbse attributes can be a reputation index, user
rating index, popularity index, activity monitorinigdexX, or some QoS attributes such as
availability or execution duration. (The Trust ditgy is a light-weight knowledge base about
those trust dimensions, their types and associattics.)The trust engine fetches the values
() of those attributes (either from its internalragge or from other COMPOSE components
thought APIs e.g. Reputation Server API) and noizealthem to a number in a range 0 to 1.
For attributes that are quantitative, numericathsas popularity or availability, we use relations
(1a) and (1b).

The relation {a) is for quantitative attributes that have a negatmpact on the trust i.e. the
higher the value, the lower the trust, e.g., doratir response time. Thih) is for quantitative
attributes that have a positive impact on the trgstthe higher value, the higher trust score,
e.g., reputation or popularity.

? @

2 There can be several types of atomic invocatitetioms between constituent services of composition
According to [12] those arsequentiainvocation,parallel invocation,probabilistic invocation,circular
(loop) invocation, synchronousactivation, andasynchronousactivation. Some authors, such as [13],
consider also ahoicerelation between the composed services.

® The COMPOSE assisted service composition engioeiges the desired compositions (the ones that
match the given input-output data interface) asrapmosition graph that captures all potential coritpos
services in a number of sequential layers. Invocatelation between services across different stage
the workflow is also sequential, however, everyetagnay capture the services that can be executed in
parallel at that stage of the workflow [from Deligble D3.1.3.1].

* WP5 components provide values for these attriboftéise services.

"HSSS % & ' () (*

for each (2 j m; m - number of trust attributes in a criteria) @ach constituent service
of a composition (1 n). is the value of a trust attribute of a constituent serviceé $

is the maximal [possible] value of a trust attribuwhile is the minimal [possible]
value of a trust attribute.

If the trust evaluation needs to take into accaitrtbutes that are descriptive rather than given
as quantified, e.g. a Certificate Authority or S#guGuaranties such as Authorization or
Confidentiality details, then these are evaluatsihgi the trust scoring approach which we
presented in D3.1.2.1 and which is based on a d#rsmilarity measure in a 0 to 1 range.

Then, after all the values are normalized, we apglyregation function86% &' ()on
these normalized values. We use the aggregatiaridms proposed in the work [12]. Table 1
shows some of the presented aggregation funcfidgresaggregation functions can be expanded
to cover additional attributes according to ther'ssequirements (e.g. to include Reliability,
Price, etc.).

Table 1: Aggregation functions

Popularity/User Rating/Activity Availability* Descriptive (e.0,
Monitor/Reputation/ResponseTime Certificate Authority,
Security)

Sequential ! 01 ! 01

structure I 3 r

+ ' 2,

Parallel 4/ 4/ 4/

structure

+ 0+ 080 +

Finally, by applying a relation (2) we calculate ttiust score of a composition. The score is a
value in a range 0 to 1; a higher score means highstiness of a composition i.e. higher match
to the user’s trust perception.

<fe (=>?@ABC)0C?? DE BC)
<ps =>?@A BC

#5678 79:; ?70@

® Assuming the availability value is taken as praligbthen the probability that both S1 and S2viee
are available is equal to the product of each senviability value.

"THEES % & ' () (+*

Prototype implementation -the trust scorer is implemented as a web servi¢batat can be
invoked and integrated with other components thinatgyRestful API. Please note that the trust
scorer and filter prototype is also reported inwehbles D.3.1.2.1/2, but their focus was on
simple services trust, while in this deliverable fhcus is on the service compositions trust. The
API offers the following operations for dealing Wwithe trustiness of compositions:

bo(& (7
7 4 <
7=>
{

"resources": [{ <compositionID, compositionFlow Descr>,
<compositionID, compositionFlowDescr> .. <compositi oniD,
compositionFlowDescr>}],

"parameters"; {

"attributes": [<type, importance>, <type, importance> .. <type,

importance>] }

}

A field “resources” is an array of identifiers afrapositions and theirs descriptions (Node-Red
flows in JSON format) that are input for the trgsbring. The “attributes” is a specified trust

criteria, as an array of desired trust-relatedtattes and their weights. A vocabulary for the
attributes is defined in the COMPOSE Trust ontologyd “type” refers to concepts in that

ontology.

An example request body

{
"resources": [
{
"compositionld": "composition_1",
"composition": Node-Red JSON Flow here..
h
{
"compositionld ": "composition_2",
"composition ": Node-Red JSON Flow here..
h
{
"compositionld ": "composition_3",
"composition ": Node-Red JSON Flow here..
}
I8
"parameters": {
"attributes": [
{
"type": "http://www.compose-
project.eu/ns/web-of-things/trust#ProviderWebReputa tionBy3rdParty",
"importance™: 1
h
{

"HSES % & ' () (1+

"type": "http://www.compose-project.eu/ns/web
of-things/trust#NumberOfCompositions",
"importance": 1

}

}
Response - Content-Type:application/json; Stataeca00

{ "success": "true", "result": [<compositionld, sco re, rank>,
<compositionld, score, rank>... <compositionld, score , rank>]}

where “result” is an array of <compositionld, scar@nk> attributes that contain an identifier
of composition sent to the trust scorer (field “qsitionld”), its trust score (field “score”) and
its rank (field “rank”™). The ranking is by the ttuscore, from highest to the lowest. An example
response body

{

"success":"true",

"result":[
{"compositionld":"composition_1","score":0.9,"ran k" 1},
{"compositionld":"composition_2","score":0.85,"ra nk":2},
{"compositionld":"composition_3","score":0.4,"ran k":3}

I}

* (*l
' (! 11&7 5@ *

Request Header: Content-Type:application/json

Request BodySame as the above.

Response - Content-Type:application/json; Stataeca00
{

"success": "true",
"result": [<compositionld>]
}
where “result” is an array of identifiers of compmss that have been evaluated as trusted by
the filter. An example response bady

{

"success": "true",
“"result": ["composition_1", "composition_2"]

}

In a case of error, a JSON response is produced:
Response - Content-Type:application/json; chars&tEt8; Status Code: 500

{

"success" : "false",
"message" : "error message text"

1

"HSSS % & ' () (*

Source code is published as open source, with ApathLicense, on a GitHub code
management repositoriat{p://goo.gl/cSeoHn

"HSSS % & ' () (*

3 References

AB

AB

AB

A+B

A/B

AB

AB

AB

A4B

A 5B

$$ C(D$. DS$SH#HE&D & $-'DE &
@7 1% &6 11 (DF D $+5D $ D $
)+/D 55$

$# & &2$ 1 DE%! 3 ' DF

D $D $D $)5D 55/%
=$6 &GS DE% ! *%l ' &2 ' 1&DF

! ! "l D $ D $/DH D
,& (7 (H ,& (D55D $+)+$

$ & D%$ 11D &=$#' ((DE" 2 DF #$

I %! &' D &D $D $ D=$# (ID$# D &=$%$
,& D&$ (D5$

$111 &%$: DE ! * ' (31 2-
G DF & 12 0 (&0 (% .1 (
2 1 D 55$ 200%. 55 2 1 $ 55 0 <2 0<% O

* D55D $)5%
$,CD#J D $> &!D>%H &D # % (! D & 0%

J1 DE%O (&% 1 %! ' & 2

11 (DF ! (N% ! D $44D$D5S$

$ DH$ D#$2D=$,& D &#$IDE.> (* 2

' ! (, DF v

& D $D $+D $)4D $ 55+$

$ D$! D%S% D &>% DE% ' && D
& xor2 DF Lo

S & D $D $D $)+D55%

$. &$ DE% ' &' x 2

9 ! DF 0 2 * DD[p5+D $ 5)4+$

$ & &=$#'(DE.3&1>9 2 *x 7- & *

12 *# DF &$ & I D D D $ 4+

4D 55$

$!'DS$I3"'D$ D &I$ DE' ' 1(*3

DF % Lo+ - D$)+D55%

-D-D &K 2@ L! ! ' &

& $L 'l (D 554$ M54$0 0 * $0D

554%

2DG D $L!H& ' & 'C $L *3

((* 7% @D5 41% *J%$0 D5$

6&(C D D $L% ' & (113
'$LO =1 *2 6 1°?0=26@ 4%

?5 @7 5%

"HSSS % & ' () (*

