

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 1 of 37

Collaborative Open Market to Place
Objects at your Service

D1.3.1

Service modelling and representation – First Version

Project Acronym COMPOSE

Project Title Collaborative Open Market to Place Objects at your Service

Project Number 317862

Work Package WP1 COMPOSE architecture design and specification

Lead Beneficiary OU

Editor Jacek Kopecký OU

Reviewer Dave Raggett W3C

Reviewer Carlos Pedrinaci OU

Dissemination Level Public

Contractual Delivery Date 30/04/2013

Actual Delivery Date 30/04/2013

Version V1.0

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 2 of 37

Abstract

In this deliverable, we put together the baseline models for service description to be used in
COMPOSE, building on the results of the project SOA4All, and with the aim of publishing ser-
vice descriptions as Linked Data. Guided by real-world services from two of the project’s use
cases, we also gather further relevant ontologies and we propose lightweight COMPOSE-
specific vocabularies to be used in service descriptions, where we can find no suitable existing
ontologies to re-use.

The primary uses for service and object descriptions in COMPOSE are discovery – making ser-
vices and service objects reachable and understandable, and composition – combining multiple
services and service objects in higher-level, added-value services and applications. These uses
guide the selection and design of vocabularies in this deliverable.

The core ontology is the Minimal Service Model (MSM), which presents a simplified operation-
oriented understanding of services, and maps straightforwardly to WSDL descriptions. On the
side of RESTful services and APIs, where WSDL is usually not available, we adopt the
hRESTS microformat that gives MSM structure to plain-HTML documentation.

On top of the MSM, we use SAWSDL annotations as a standard way of attaching semantics to
service descriptions. To structure the semantics, we use the WSMO-Lite service semantics on-
tology, which distinguishes four types of service semantics: functional, nonfunctional, behav-
ioural, and information-model semantics.

The COMPOSE-specific vocabularies in this deliverable are all built on top of existing ontolo-
gies, and they use the lightweight terms of WSMO-Lite. Further, we specify terms for basic ser-
vice description metadata, and we provide an initial sketch of future work in the directions of
security, reputation and trust.

This document should serve as a common basis for the project’s efforts around publishing, dis-
covering, and composing services and service objects. It is not meant as a comprehensive single
model that would be set in stone; rather it is the first convergence point that can kick-start de-
pendent efforts. The common set of ontologies, whether external or COMPOSE-specific, will be
maintained in a public, up-to-date resource, for the benefit of project partners as well as third
parties who may reuse the work.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 3 of 37

Document History

Version Date Comments

V0.1 04/04/2013 Initial version

V0.2 11/04/2013 Update, circulated

V0.3 18/04/2013 More content, handled some comments from Carlos

V0.9 24/04/2013 Mostly complete, handled comments from Dave, Benny, Carlos,
Alessio, Daniel; included Section 5 content from Daniel, Alessio,
Marko (new draft expected)

V1.0 29/04/2013 First final version, handled comments from Daniel, Benny, and
added new Section 5

Authors

Jacek Kopecký, OU

Daniel Schreckling, UNI PASSAU

Alessio Gugliotta, INNOVA

Marko Vujasinovic, INNOVA

Stefania Galizia, INNOVA

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 4 of 37

Table of Contents

Abstract ... 2�

Document History ... 3�

Acronyms .. 5�

Namespace Prefixes .. 6�

1� Introduction... 7�
1.1� Running Examples... 8�

1.1.1� Barcelona Smart Environment SOS Service... 8�
1.1.2� Trentino Meteorological Sensors.. 10�

1.2� Requirements Addressed in this Deliverable... 12�
1.3� Ontologies Used in this Document.. 14�

2� Core Service Models and Service Description Technologies 16�
2.1� Linked Service Models .. 16�
2.2� Linked Service Descriptions.. 21�
2.3� Static and Dynamic Metadata... 24�

3� COMPOSE Vocabularies for Service Annotation ... 25�
3.1� Functional Classification of COMPOSE Services... 25�
3.2� Example Information Model Terms for Service Outputs.. 26�
3.3� Lifting and Lowering Transformations ... 27�
3.4� Example Nonfunctional Parameter Types...28�

4� Basic Service Description Metadata ... 30�

5� Preliminary Security- and Trust-related Aspects .. 31�
5.1� Security Metadata.. 31�
5.2� Security and Trust Ontology .. 34�

6� Summary and a Look Forward .. 36�

References ... 37�

Table of Figures

Figure 1: Location of Sensors within Barcelona Smart Zone. .. 9�
Figure 2: Location of Sensors within Trentino Smart Territory. ... 10�
Figure 3: Smart Territory Data Sources Description .. 11�
Figure 4: The Minimal Service Model... 17�
Figure 5: Stack of Service Description Models... 25�
Figure 6: COMPOSE service functionality classification.. 26�

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 5 of 37

Acronyms

Acronym Meaning

COMPOSE Collaborative Open Market to Place Objects at your Service

API Application Programming Interface

CF Climate and Forecast ontology

DC Dublin Core metadata terms

DUL DOLCE Ultra-Lite upper ontology

JSON JavaScript Object Notation

JSON-LD JSON Linked Data format

MSM Minimal Service Model

NFP Nonfunctional Property

OWL Web Ontology Language

OWL-S Semantic Markup for Web Services

PROV (not used as an acronym) Provenance Ontology

QU Library for Quantity Kinds and Units: schema

QUDV Quantities, Units, Dimensions, Values

RDF Resource Description Framework

RDFS RDF Schema

hRESTS HTML for RESTful Services

SAWSDL Semantic Annotations for WSDL and XML Schema

SKOS Simple Knowledge Organization System

SOAP (no longer an acronym, old meaning) Simple Object Access Protocol

SOS Sensor Observation Service

SPARQL (not an acronym) SPARQL Query Language for RDF

SSN Semantic Sensor Networks

WSDL Web Service Description Language

WSMO Web Service Modelling Ontology

XML Extensible Markup Language

XQuery XML Query

XSPARQL (not an acronym) combination of XQuery and SPARQL

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 6 of 37

Namespace Prefixes

Prefix URI

��� http://purl.oclc.org/NET/ssnx/cf/cf-property#

�������� http://compose-project.eu/ns/web-of-things#

	�� http://purl.org/dc/terms/

	
�� http://purl.oclc.org/NET/ssnx/qu/dim#

	��� http://www.loa-cnr.it/ontologies/DUL.owl#

��� http://www.w3.org/2003/01/geo/wgs84_pos#

���� http://iserve.kmi.open.ac.uk/ns/msm#

��� http://purl.oclc.org/NET/ssnx/qu/qu#

�����
��� http://purl.oclc.org/NET/ssnx/qu/quantity#

�	�� http://www.w3.org/1999/02/22-rdf-syntax-ns#

�	��� http://www.w3.org/2000/01/rdf-schema#

����� http://iserve.kmi.open.ac.uk/ns/hrests#

����	�� http://www.w3.org/ns/sawsdl#

���� http://purl.oclc.org/NET/ssnx/ssn#

��
�� http://purl.oclc.org/NET/ssnx/qu/unit#

��� http://www.wsmo.org/ns/wsmo-lite#

��	�� http://www.w3.org/ns/wsdl

��	��� http://www.w3.org/ns/wsdl-extensions#

��	� http://www.w3.org/2001/XMLSchema#

Prefix URI used for example terms

��� http://example.org/

�����
��� http://example.org/trentino/

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 7 of 37

1 Introduction

In COMPOSE, two types of Web services need to be described: service objects that act as fa-
çades for real-world smart objects in the COMPOSE infrastructure, and services that provide
business logic, possibly by using service objects and other services. The COMPOSE infrastruc-
ture distinguishes two data stores: an object and service registry that contains the metadata of
smart objects, service objects, and services, and an operational data repository that stores actual
object data. This document provides models to be used in the object and service registry.

The models described in this document are semantic,1 meaning that data expressed with these
models will be self-describing, and can support inference and reasoning using Semantic Web
tools.

The primary uses for service descriptions in COMPOSE are discovery – making services and
service objects reachable and understandable, and composition – combining multiple services
and service objects in higher-level, added-value services and applications.

A COMPOSE service description is made out of 3 distinct portions:

1. Service structure – a set of operations offered by the service, with their corresponding
input and output parameters, grounded in the real-world service or smart object;

2. Service semantics – a description of the domain-specific characteristics of the service,
especially including its functionality;

3. Metadata – domain-independent properties such as provenance and security policies.

The models support the principles of Linked Data: i) using URIs as names for things, ii) using
HTTP URIs so clients can follow them, iii) providing useful information when the URIs are
dereferenced, and iv) including links to other data. COMPOSE services and service objects are
described as linked data, and it is expected that they can process and produce linked data as
well.

This document is meant to kick start other activities in the project that rely on service (object)
descriptions. As an initial report on service modelling and representation, its scope leaves out
several aspects that will be developed later in the course of the project:

� Internal details of composite services, such as the specification of business logic;
� Security policies (the document only describes initial security-related aspects).

The semantic models collected and defined in this document will all be available from an up-to-
date resource at http://compose-project.eu/res/sws-models/.

In this document, we describe the models with examples based on the project’s application sce-
narios. Below, Section 1.1 introduces those scenarios and the services and service objects that
we use as running examples.

In Section 1.2, we list the project requirements (as identified in Deliverable D1.1.1 “COMPOSE
requirements”) that are addressed in this present deliverable.

Section 1.3 briefly lists the ontologies used in this document, as a point of reference.

Sections 2–4 collect and describe the actual service description models, along the aforemen-
tioned three distinct portions of service descriptions. In particular, Section 2 starts with the core
service structure and semantic annotation models, and the description languages in which the
semantic models are grounded. Section 3 provides basic COMPOSE-specific vocabularies for

1 See http://www.euclid-project.eu/modules/chapter1 for a comprehensive introduction to semantic data
models and to Linked Data.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 8 of 37

describing the domain semantics of COMPOSE services, building on established standards.
Section 4 discusses basic domain-independent metadata for the semantic descriptions, such as
time stamps and provenance.

Section 5 discusses the initial security-related aspects of service modelling and representation,
in preparation for the work scheduled in Work Package 5 “Information and service security”.

Finally, Section 6 provides a brief summary of the models described in this deliverable, and a
view forward to further steps in service modelling and representation in COMPOSE.

1.1 Running Examples

The example services presented in the following subsections are taken from the COMPOSE
project use cases, and they illustrate the diversity and heterogeneity faced by the project.

1.1.1 Barcelona Smart Environment SOS Service

The Smart City use case, titled “Barcelona smart environment”, has a number of sensors aggre-
gated in a single publicly reachable Sensor Observation Service (SOS2). The SOS standard de-
fines means for querying sensor observations but also for accessing the metadata of sensors
registered in the service.

The SOS service is accessible through the SOAP protocol [7], a communication protocol that
defines a simple XML format for messages, and the specific and strict rules for their processing,
to ensure either interoperability or graceful failure. Further, the service is described with a
WSDL description3 – WSDL [8] is an XML format for defining the interfaces of Web services,
which models services in three layers: abstract XML-based operation interfaces that tell the cli-
ents what to send and what to expect back; concrete bindings to network protocols so the clients
know how to send the messages; and actual network endpoints where the services can be
reached. The layering in WSDL is designed to support maximal level of late binding – the client
is built to the abstract contract of a type of service, and can adapt at run-time to the specific
networking protocols and locations of concrete service instances.

The currently available sensors registered in the Barcelona SOS service are mostly located on
the campus of Retevision, illustrated in Figure 1 (created using Google Earth).

2 See http://www.opengeospatial.org/standards/sos
3 The WSDL description is available at http://46.31.56.162/sosdev/sos.asmx?wsdl

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 9 of 37

Figure 1: Location of Sensors within Barcelona Smart Zone.

The WSDL description of the SOS service can be summarized in the following condensed XML
listing, which will be the basis for further example listings later in this document:

���	��	��
�
�
�����
����������������
�����������������������
��������������������������� �
!�����	�������� �
!�����	���������������"��#����
�
�
��$���%��� �
!�����	���������������"��#����
�
�
��$���&���� �
!�����	���������������'����
��$�����$���%��� �
!�����	���������������'����
��$�����$���&���� �
!�����	���������������"��&����(��
��$���%��� �
!�����	���������������"��&����(��
��$���&���� �
!�����	���������������)�
����$�����$���%��� �
!�����	���������������)�
����$�����$���&���� �
!�����	���������������%�����&����(��
��$���%��� �
!�����	���������������%�����&����(��
��$���&���� �
������	������*����������$��$���� �
���!�����	��������
���������"��#����
�
�
���� �
���!�����	��������
���������'����
��$������� �
���!�����	��������
���������"��&����(��
���� �
���!�����	��������
���������)�
����$������� �
���!�����	��������
���������%�����&����(��
���� �
�������	������*��� �
!�����	���
�	
��������$��$���������������$��$����� �
!�����	���
�	
��������$��$���+,������������$��$��� �� �
������	�����(
���������$��� �
���!�����	�������������$��$������
�	
�������$��$�� ��� �
���!�����	�������������$��$���+,���
�	
�������$��$ ���+,�� �
�������	�����(
�� �
����	��	��
�
�
��� �

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 10 of 37

Among the sensors registered in the Barcelona SOS service, there are for instance sensors for
temperature, humidity, luminosity, noise, soil moisture, and parking.

In COMPOSE, we should be able to view each sensor registered in a single SOS service as a
separate object, and we should be able to represent and access them as logically separate service
objects. This will enable us to select sensors by their location, for instance. Note that a single
sensor can sense multiple properties, e.g. humidity and temperature, which should not be seen as
two separate sensors.

1.1.2 Trentino Meteorological Sensors

The Smart Territory use case makes use of services and data sources available for the Trentino
region. Recently, an initial batch of meteorological data sources was made available at
http://www.dati.trentino.it/organization/meteo, with sensors of weather and snow, and human-
oriented weather bulletins and forecasts, both local and region-wide. In this deliverable, we will
use the sensor registry service called “Anagrafica stazioni meteo (stazioni automatiche)”, which
is similar to the Barcelona SOS service, and currently has 189 temperature/wind/precipitation
sensors scattered throughout the Trentino region, depicted in Figure 2 (also created using
Google Earth).

Figure 2: Location of Sensors within Trentino Smart Territory.

Effectively, the “Anagrafica” service is a downloadable XML document that lists the sensors by
name and location. Each sensor makes its readings (temperature, wind and precipitation) from
the last 24 hours available as a separate downloadable XML document. Both the “Anagrafica”
registry and the sensors themselves use custom XML formats that haven’t been (internationally)
standardized.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 11 of 37

The screenshot in Figure 3, shortened to leave only the relevant parts, shows the description of
the Trentino meteorological data sources, including the “Anagrafica stazioni meteo” service,
and the “Dati recenti delle stazioni…” set of links that provide actual sensor readings.

Figure 3: Smart Territory Data Sources Description

In COMPOSE, each sensor station should be represented as a separate object, and the “Ana-
grafica” registry should be used by the COMPOSE infrastructure to register and unregister the
individual sensor stations.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 12 of 37

1.2 Requirements Addressed in this Deliverable

This document directly and indirectly addresses a number of COMPOSE requirements identi-
fied in deliverable D1.1.1 “COMPOSE requirements”. Below, we list the relevant requirements
and we discuss in what way and to what extent, the deliverable addresses them.

US–3 Easy developer interaction with the platform to create and register service objects
US–4 Easy developer interaction with the platform to create services

To ensure the usability and simplicity of COMPOSE, the models developed in this
document are designed to be very lightweight, following the principle of minimal onto-
logical commitment.

US–8 Support service discovery to the extent possible
SM–3 Services and applications semantic description
SMT–1 Service model

Service discovery is the dominant purpose of semantic service descriptions, and in
COMPOSE, we use semantic technologies to support service discovery, therefore US–8
and SM–3 are key motivators for this deliverable. SMT–1 is addressed in this deliver-
able partially, to the extent of its overlap with SM–3.

SM–2 Manual service objects semantic description
SM–4 Semantic information should be made accessible to platform users
SM–5 Semantic information should be published
SM–6 Semantic matchmaking
DP–5 Efficiently support both data and metadata stores

These five requirements effectively list the types of tools that need to be built or
adopted by the COMPOSE project to create and process semantic service descriptions:
authoring tools (SM–2), a registry (SM–4, SM–5, DP–5) with search and discovery
functionalities and APIs (SM–5, SM–6, DP–5). As such, they define the intended use
for the models selected and devised in this deliverable.

HT–1 Integrate a Number of different object technologies into the platform

The example services introduced in Section 1.1 show part of the technological diversity
faced by the COMPOSE project. We have services that use the SOAP protocol for
communication, and are described in WSDL, as well as services that use plain custom
XML-over-HTTP for the exchanged data, and are described only in human-oriented
HTML documentation. In addition, we expect services that communicate custom JSON
over HTTP. In this deliverable, we do not deal directly with services or objects that do
not communicate using HTTP(S), expecting that such services and objects will be ac-
cessible to COMPOSE through an HTTP(S) gateway façade.

DP–4 Data lifecycle management

Section 4 discusses how service descriptions can be annotated with update timestamps,
in order to support the evaluation of freshness of service/object metadata.

DP–7 Provenance Information

Section 4 shows basic provenance metadata for service/object descriptions. However,
this provenance metadata is aimed to be informative for service description consumers,
rather than to support security within the COMPOSE platform. Section 5 discusses the
initial security aspects related to service and object descriptions.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 13 of 37

DP–14 Support for Data Composition and Linked Data
SMO–6 Smart object identification

The models presented in this deliverable are semantic models and thus they support data
composition; the service descriptions that use these models should follow the Linked
Data principles, in particular including unique identification of service objects (SMO–
6). Indeed, the iServe registry [2], which was produced by the SOA4All project and will
be the starting point for COMPOSE, does publish service descriptions as Linked Data.
Therefore, these requirements are directly supported by this deliverable.

ME–1 Support service objects joining and leaving the system
ME–2 Support services joining and leaving the system

These requirements have direct bearing on the APIs of the service and object registry
within the COMPOSE platform. As objects and services may re-join the system after
having temporarily left, some metadata can be retained by the system, as discussed in
this deliverable in Section 2.3.

SEO–2 Service object – smart object relationship

By using the 	�����-���� property on service object descriptions, as discussed in Sec-
tion 4, this requirement is covered.

SEO–6 Semantic enhancement

As service objects directly represent smart objects, the semantic descriptions of service
objects, covered in Sections 2 and 3, will (mostly) pertain to the smart objects them-
selves. Only where a service object presents a transformed or incomplete view of the
underlying smart object, the semantic description may reflect the transformation or
functionality subset implemented in the service object. This also implies that a single
smart object can be represented by multiple service objects and that their semantic de-
scriptions may give different account of the capabilities of the smart object. For the
purpose of this requirement, i.e., for turning smart objects into building blocks useful
for additional parties, this possible multiplicity of service objects is a desired capability
of the COMPOSE system.

Note that the security aspect of this requirement is in scope for the initial discussion of
security issues in Section 5, and not directly addressed in other parts of the deliverable.

SEO–*, SER–* (other than those mentioned explicitly)

Many of the SEO requirements mirror earlier requirements on service representation
and on functionalities around service descriptions, and this document addresses them
accordingly.

SCO–1 Composite service creation

When composing services, the user (or the automated service composition tool) will
need to discover suitable services, devise the control and information flows between
them, and possibly compute aggregate properties, especially for nonfunctional parame-
ters such as expected performance. In this deliverable, the first-version report on service
modelling and representation, composition is out of scope and therefore not expressly
supported. However, the core models in Section 2 give a solid basis on which any nec-
essary additions can be built.

STD–2 Contributions to existing standard ontologies

Section 3 covers vocabularies specific to COMPOSE. These may be input to the pro-
ject’s standardization activities.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 14 of 37

USC–1 Service and data model

This requirement is covered under earlier requirements.

USC–14 Support for Spatial and Temporal Queries

The location nonfunctional properties described in Section 3.4, and the timestamp prop-
erties described in Section 4, support spatial and temporal metadata queries.

USC–16 Integration with existing Sensor Network Technologies

The sensor descriptions in this document are based on the Semantic Sensor Network
Ontology, which was part of the final output of the W3C Semantic Sensor Network In-
cubator Group, and was informed by a wide body of existing technologies.

1.3 Ontologies Used in this Document

This deliverable puts together a number of external ontologies and vocabularies. Here we list
them to serve as a point of reference.

RDF, RDFS: The semantic models presented in this deliverable are built on the Resource De-
scription Framework (RDF) graph data model, which heavily relies on URIs to identify con-
cepts and objects. RDF Schema (RDFS) is a basic ontology definition language for RDF.

RDF: http://www.w3.org/TR/rdf-concepts/

RDFS: http://www.w3.org/TR/rdf-schema/

SAWSDL: The standard language for formal descriptions of Web services is WSDL (ver-
sion 2.0), an XML language. On top of WSDL, the first standard for semantic description of
Web Services is the lightweight annotation layer called Semantic Annotations for WSDL and
XML Schema (SAWSDL, [3]), which defines not only XML attributes for use in WSDL, but
also an RDF form for its annotations.

WSDL: http://www.w3.org/TR/wsdl20

SAWSDL: http://www.w3.org/TR/sawsdl

SOA4All vocabularies: The SOA4All project developed a number of vocabularies for semantic
descriptions of Web services, importing SAWSDL terms. The vocabularies consist of the
Minimal Service Model (MSM, [2]), WSMO-Lite [4] as the ontology for service semantics, and
hRESTS/MicroWSMO microformats [5] that enable the semantic description of RESTful ser-
vices that do not have a formal WSDL description. These vocabularies are further described in
Section 2.

Semantic Sensor Networks: The W3C Semantic Sensor Network (SSN) Incubator Group,
concluded in 2011, reviewed a large number of sensor-related ontologies, and produced an ex-
haustive final report [6] and a formal ontology, the SSN ontology, which we intend to use for
describing the sensor aspects of COMPOSE services. From the final report:

“The SSN ontology can be used for a focus on any (or a combination) of a number of perspec-
tives:

1. A sensor perspective, with a focus on what senses, how it senses, and what is sensed;
2. A data or observation perspective, with a focus on observations and related metadata;
3. A system perspective, with a focus on systems of sensors; or,

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 15 of 37

4. A feature and property perspective, with a focus on features, properties of them, and
what can sense those properties.”

SSN XG Final Report: http://www.w3.org/2005/Incubator/ssn/XGR-ssn/

SSN Ontology: http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

Quantities and Units: The OMG SysML Quantities, Units, Dimensions and Values (QUDV)
working group, in cooperation with the Semantic Sensor Network group, produced a set of on-
tologies for common quantities and units (QU). On top of these ontologies, the SSN group
added a Climate and Forecast (CF) ontology that lists a number of meteorology-related quanti-
ties and units. We use these ontologies whenever quantities and units are required in service
descriptions.

QU Quantity Kinds and Units: http://www.w3.org/2005/Incubator/ssn/wiki/QU_Ontology

CF Climate and Forecast ontology: http://purl.oclc.org/NET/ssnx/cf/cf-property

These ontologies define the namespaces 	
� , �� , �����
�� , ��
� , and �� .

DOLCE Ultra-Lite: The SSN Ontology is aligned with the DOLCE Ultra-Lite (DUL) founda-
tional ontology. According to the SSN report: “the alignment between the SSN ontology and the
DOLCE Ultra Lite upper ontology has helped to normalise the structure of the ontology to assist
its use in conjunction with ontologies or linked data resources developed elsewhere.”

DUL: http://ontologydesignpatterns.org/wiki/Ontology:DOLCE+DnS_Ultralite

Dublin Core: The Dublin Core Metadata Initiative (DCMI) has been maintaining terms for ba-
sic metadata, used in various places in this deliverable.

Dublin Core terms: http://dublincore.org/documents/dcmi-terms/

Geolocation: The W3C Semantic Web Interest Group has produced a basic geolocation vo-
cabulary using the WGS84 datum shared with the GPS system.

Geo: http://www.w3.org/2003/01/geo/#vocabulary

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 16 of 37

2 Core Service Models and Service Description Tech-
nologies

The SOA4All project developed Linked Services, a framework for dealing with services on the
Web [1]. It extends notions around Linked Data, a relatively recent effort derived from research
on the Semantic Web, whose main objective is exposing and interlinking data previously en-
closed within silos. The resulting Web of Data is based upon four simple principles, known as
the Linked Data principles [9], which essentially dictate that every piece of data should be given
an HTTP URI which, when looked up, should offer useful information using Web standards
such as RDF for representing data and SPARQL to support online data queries. Importantly,
data should be linked to other relevant resources thereby allowing humans and computers to
discover additional information.

Linked Services build upon Linked Data and govern the way data sources and services are de-
scribed, discovered, invoked, and integrated. In a nutshell, Linked Services are services that can
consume and produce Linked Data and whose descriptions (such as their functionality and in-
put/output data types) are also published as Linked Data. Linked Services simplify the integra-
tion of heterogeneous services by relying on a common means for representing data.

Linked Services can easily be integrated with existing Linked Data sources as both data and
service interfaces are semantically described according to shared vocabularies. The data from
the Web of Data can be directly used to invoke services. Combining Linked Services with
Linked Data also enhances service discovery due to the provision of semantic descriptions that
include links to/from other datasets and that are exposed using standards for data access and
querying (esp. HTTP, RDF and SPARQL). For example, based on the types of data in an appli-
cation’s workspace, it is possible to exploit the semantic description of service inputs in order to
obtain only services that can process the available data.

COMPOSE deals with Web services and with service objects (Web service façades for smart
objects) and requires semantic descriptions of these services. From the point of view of seman-
tic models for Web services, as shown below, there is no conceptual difference between
COMPOSE services and service objects, therefore this section does not make any such distinc-
tion.

2.1 Linked Service Models

The Linked Services approach uses the Minimal Service Model (MSM) as its core conceptual
model [2]. The Minimal Service Model, driven by Semantic Web best practices, builds upon
existing vocabularies, namely SAWSDL [3], WSMO-Lite [4] and hRESTS [5], depicted in Fig-
ure 4 with the ����	� , �� , and ���� namespaces respectively. In a nutshell, MSM is a simple
RDFS integration ontology based on the principle of minimal ontological commitment; it cap-
tures the maximum common denominator between existing conceptual models for services,
covering the core semantics of both Web services and Web APIs in a common model, homoge-
neously supporting publication, discovery and invocation.

MSM, shown in white and denoted by the ��� namespace, defines $��(
��� that have a num-
ber of &�����
��� , which in turn have
���� , ������ and ����� (error) .�����#������ de-
scriptions. .�����#������ may be composed of mandatory or optional .�����/���� . The
intent of the message part mechanism is to support finer-grained input/output discovery, as
available in OWL-S and WSMO, especially including support for optional parts.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 17 of 37

msm:Service msm:Operation
msm:Message

Content

msm:hasOperation

msm:hasOutput

msm:hasOutputFault

rest:
URITemplate

rest:Method

rest:hasAddress rest:hasMethod

http:Method

wl:Functional
Classi�cationRoot

wl:NonFunctional
Parameter wl:Condition wl:Effect rdf:Resource

sawsdl:lifting
SchemaMapping

owl:Ontology

wl:Ontology

wl:usesOntology

msm:Message
Part

msm:hasPart

msm:hasMandatoryPart

msm:hasOptionalPart

sawsdl:model
Reference

sawsdl:modelReference

rdf:Resource

rdfs:isDe�nedBy

rdfs:seeAlso

rdf:Literal

msm:hasNamesawsdl:lowering
SchemaMapping

msm:hasInput

msm:hasInputFault

Figure 4: The Minimal Service Model

MSM descriptions can be annotated with human-readable labels, comments and documentation,
using existing RDF properties �	�������� , �	���������� , and 	��	����
��
�� , which can
support full-text search capabilities that will complement the matchmaking algorithms that use
the formal semantics of the service descriptions.

Example: the Barcelona SOS service’s WSDL description would translate to the
following MSM triples (with example instance URIs):

������������$&$��� ���������	� �0�
� �	����������$����0�

 ��������������� �����$��+1�����$��,1�������
����$��+��� ������������ �0�
� �	����������"��#����
�
�
����0�
� ������������ �����$��+%�0�
� ������������ �����$��+&���
����$��+%��� ������������������ �0�
� �	����������"��#����
�
�
��$���%�����
����$��+&��� ������������������ �0��
� �	����������"��#����
�
�
��$���&������
������������������
������
���	�

SAWSDL, shown in yellow, is a W3C standard that defines three properties for attaching se-
mantic annotations to service descriptions: ��	��)�������� points from any service description
element to its concrete semantic description, and will be illustrated in examples below; while
�
��
�$�����.���
� and �����
�$�����.���
� refer to data transformations that lift
data from an underlying syntactic form (e.g. JSON or XML) into a semantic form, or lower se-
mantic data into syntactic messages.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 18 of 37

Example: Since both the Barcelona SOS service and the Trentino “Anagrafica” ser-
vice are sensor registries, their data should be lifted from the custom XML form in
which they are provided into sensor service descriptions in the formats described in
this deliverable. Presuming we have an XQuery file with the transformation, the
service would be annotated like this:

����$��+�������&�����
���0�
� �	����������"��#����
�
�
����0�
� �������&����������$��+&���
����$��+&�������.�����#�������0��
� �	����������"��#����
�
�
��$���&����0�
� ���������������	�����������

��������	�������
�����	���������� �!� �"	����� #�������$%&
�

Section 3.2 contains further discussion about lifting and lowering mappings in COMPOSE.

WSMO-Lite, shown in blue, allows service providers to describe their service offerings so that
a client can make an up-front decision on whether and how to consume the service's functional-
ity. It defines a top-level vocabulary for semantic descriptions that can be pointed to by model
references. WSMO-Lite distinguishes four core types of service semantics:

1. Information Model semantics – the meaning of the data communicated by the service;
2. Functional semantics – what the service does for its clients;
3. Behavioural semantics – how clients should communicate with the service; and
4. Nonfunctional semantics – any incidental details pertaining to the implementation or

running environment of the service.

The non-trivial distinction between functional and nonfunctional semantics can be illustrated as
follows: if two services have the same functional semantics, they should be effectively inter-
changeable, except that one service can be better (faster, closer, cheaper etc.). On the other
hand, if two services have the same nonfunctional semantics, it can be seen as a coincidence
without importance: if one service is a sensor and another one an actuator, it is unlikely to be
significant in discovery and composition that they have the same location, response time, and
price.

Functional semantics is the primary type of service description for supporting service discovery
– a client specifies what needs to be done, and a registry find services that may be able to do it.
WSMO-Lite supports two ways of defining functional semantics: through hierarchical classifi-
cations of known functionality, and through explicit preconditions and effects of service invoca-
tion. Hierarchical classifications are intended to express coarse-grained stakeholder consensus,
while preconditions and effects enable fine-grained expression of service functionality, useful in
specialized settings.

Example: the Barcelona SOS service’s functionality is that of a collection of sen-
sors. Later in this document we discuss a basic hierarchy of service functionalities
important in COMPOSE; here we can show the SAWSDL annotation that marks
the service as the collection:

������������$&$�������$��(
���0�
� ����	����	��)��������� 	������������������	���� ���

The Trentino “Anagrafica” registry would be annotated in a similar manner.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 19 of 37

Information model semantics can also be used for discovery – the registry may find services that
can process the type of data available to the client, or services that can produce the type of data
the client requires. Information model semantics is especially important when composing ser-
vices – it guides the data flows from one service to another. WSMO-Lite, as a framework, ac-
cepts any ontology and schema languages as means of expressing information model semantics,
as long as their entities can be pointed to by SAWSDL model references.

Example: as the Barcelona SOS service is a sensor registry, and sensors are viewed
as individual services in COMPOSE, the "��#����
�
�
�� operation can be anno-
tated as returning services, like this:

������������$&$�������$��(
���0�
� �	����������$����0�
� �������&�����
�������$��+���
����$��+�������&�����
���0�
� �	����������"��#����
�
�
����0�
� �������&����������$��+&���
����$��+&�������.�����#�������0��
� �	����������"��#����
�
�
��$���&����0�
� ������������'������	�
���������	� � �

Using the OWL ontology language, we could further model that the output above is
not simply a ����$��(
�� , but that it has the ��������$����� functionality.

Example 2: assuming we have a Service Object for one of the air temperature sen-
sors registered in the SOS service, its output could be marked like this:

�������$�����+�������$��(
���0�
� �������&�����
�������$+��+���
����$+��+�������&�����
���0��
� �	������������&����(��
����0�
� �������&����������$+��+&���
����$+��+&�������.�����#�������0�
� ������������'������	�
	�����(����������� � �

See Section 3.2 for discussion of the information model for common sensors.

Behavioural semantics in WSMO-Lite focuses on the interaction between the service and its
clients, and is mainly intended to guide (semi)automated invocations, for example from a ge-
neric COMPOSE gateway/wrapper for third-party objects. WSMO-Lite models behavioural
semantics by describing the functionality of service operations (as above, through hierarchical
operation functionality classifications, or through logical preconditions and effects of operation
invocation), enabling clients to dynamically select suitable operations for invocation.

Example: to illustrate how functional annotations of operations can serve as a de-
scription of behavioural semantics, we will use an important part of the architecture

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 20 of 37

of the Web: safe interactions. On the Web, it is prescribed that information retrieval
with the HTTP GET method is safe in terms that it should not have any application-
significant side effects, and that the client cannot be blamed for blindly dereferenc-
ing (retrieving) URIs with GET. Safety enables services such as search engines and
client-driven polling (including following-your-nose crawling in Linked Data) be-
cause the client knows the behaviour of some operations is constrained in this way.

In the Barcelona SOS service, the operations "��#����
�
�
�� , '����
��$�����
and "��&����(��
�� are safe in this sense. To describe this, we use the class
��	���$���%�������
�� from WSDL 2.0 as a SAWSDL annotation:

2�����"��#����
�
�
���������
����������$&$����(
���
�������
����$��+��� ������������ �0�
� �	����������"��#����
�
�
����0�
� ������������'������	�
����$�����������	���� ���
�
2����������"��&����(��
���������
�����������������
 �������
����$+��+�������&�����
���0��
� �	������������&����(��
����0�
� ������������'������	�
����$�����������	���� ���

Nonfunctional semantics mainly serves as a discriminator among multiple potentially suitable
services. If two or more services can functionally fulfil the client’s task, the client may want to
consider properties such as security policies, QoS (Quality of Service metrics such as perform-
ance and reliability), location, various types of cost, and provenance. Here we speak of filtering
suitable services based on client’s nonfunctional requirements, and ranking the services based
on client’s preferences. As is the case with information semantics, WSMO-Lite accepts any on-
tology as means of expressing nonfunctional properties.

Example: a typical nonfunctional property on sensors is location. For instance, one
of the Trentino region’s sensors is located by the Galileo Galilei Scientific Lyceum
in Trento, which can be described as follows:

�����
���*3454�������$��(
���0�
� �	����������*������67
����"��
��
8��0�
� ������������'������	� ���������$�����1� ���������)*+,+��	 ���
�����
���*3454������ 	�������-��#�	����� �0�
� ���������49�3943:34;�<<��	�������0�
� ��������++�+=>+>5=�<<��	���������

WSMO-Lite provides a minimal vocabulary for distinguishing the four types of semantics when
they are pointed to by model references:

1. ���?����
����#����
�
���
��)��� is a class that marks the root concepts of hierar-
chical functional categorizations (such as RDFS class hierarchies, or SKOS concept
schemes). When a member of a hierarchical categorization marked with this class is
used in a model reference on a Service, it is interpreted as a piece of the service’s func-
tional semantics; on an Operation, it becomes a piece of the service’s behavioural se-
mantics.

2. ���#��	
�
�� and ���@����� are two classes that mark logical expressions that con-
vey the preconditions and effects, either for use on an ����$��(
�� (for functional se-
mantics) or on an ����&�����
�� (for behavioural semantics).

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 21 of 37

3. ������?����
����/�������� is a class that marks pieces of nonfunctional semantics,
sometimes also called nonfunctional properties. Particular instances of nonfunctional
parameters are pointed to by Service model references.

4. ���&������ is a WSMO-Lite class that may be used to mark semantic models espe-
cially intended as information models for service message exchanges. The use of this
class is optional in service descriptions because model references from
����.�����#������ and ����.�����/��� instances are naturally understood as in-
formation model semantics. Ontologies registered in a system may be marked as
���&������ for the benefit of tools that will then recommend these ontologies for in-
formation model annotations.

This vocabulary is used in Section 3 to define the semantic terms used in the examples above.

2.2 Linked Service Descriptions

The MSM minimal service model is a straightforward simplification of WSDL, the standard
Web service description language. As such, given semantic descriptions of any of the four types
of semantics of a particular service, it is simple to fill in the model references (and schema map-
pings, if desired) in a WSDL description:

1. Information model semantics is attached as model references on WSDL message con-
structs, and on XML Schema element declarations and type definitions.

2. Functional semantics (pointers to service functionality categories, preconditions and ef-
fects) can be attached either to WSDL interface/portType constructs, if they apply to all
services that potentially reuse the given interface/portType; or to WSDL service con-
structs if they are specific to a particular Web service.

3. Behavioural semantics (pointers to operation functionality categories, preconditions and
effects) can be attached as model references to WSDL operation constructs.

4. Nonfunctional semantics should be attached directly to a WSDL service construct.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 22 of 37

Example: here, we can collect the semantic annotations from the previous examples
and express them as SAWSDL annotations in the Barcelona SOS service’s con-
densed WSDL code from Section 1.1:

���	��	��
�
�
�����
����������������
�����������������������
��������������������������� �
!�����	�������� �
!�����	���������������"��#����
�
�
��$���%��� �
!�����	���������������"��#����
�
�
��$���&����

������������'������	�.

/��������������0���������	��0�������1�����	 �/

���������������	�����������.

/�������	������������	���������� �!� �"	�� ��� #�������$%/

�&

!�����	���������������'����
��$�����$���%��� �
!�����	���������������'����
��$�����$���&���� �
!�����	���������������"��&����(��
��$���%��� �
!�����	���������������"��&����(��
��$���&���� �
!�����	���������������)�
����$�����$���%��� �
!�����	���������������)�
����$�����$���&���� �
!�����	���������������%�����&����(��
��$���%��� �
!�����	���������������%�����&����(��
��$���&���� �
������	������*����������$��$���� �
���!�����	��������
���������"��#����
�
�
����

������������'������	�.

/������������!��������������$��������1 ����������	����/

�&

���!�����	��������
���������'����
��$�������

������������'������	�.

/������������!��������������$��������1 ����������	����/

�&

���!�����	��������
���������"��&����(��
����

������������'������	�.

/������������!��������������$��������1 ����������	����/

�&

���!�����	��������
���������)�
����$������� �
���!�����	��������
���������%�����&����(��
���� �
�������	������*��� �
!�����	���
�	
��������$��$���������������$��$����� �
!�����	���
�	
��������$��$���+,������������$��$��� �� �
������	�����(
���������$����

������������'������	�.

 /�������	������������	����������2����������1������� ����	����/

&

���!�����	�������������$��$������
�	
�������$��$�� ��� �
���!�����	�������������$��$���+,���
�	
�������$��$ ���+,�� �
�������	�����(
�� �
����	��	��
�
�
��� �

For services that are not described in WSDL (including most RESTful Web APIs), the lack of a
standardized machine-readable service description format is an obstacle to attaching semantic
descriptions. To address this issue, the Linked Services approach targets the HTML documen-

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 23 of 37

tation of such services with two microformats4 that can express the minimal service model and
SAWSDL annotations on top of it:

1. hRESTS is a microformat that gives HTML documents the MSM structure: a document
may describe a Service, which offers a number of Operations, each with input and out-
put messages made up of distinct parameters. In addition to the service model, hRESTS
also provides basic properties for grounding – information about the service’s network
location and access protocol. In particular, this is embodied in the rest:hasAddress and
rest:hasMethod properties, which may be specified for each operation of a service.

2. MicroWSMO extends hRESTS with the SAWSDL properties for model references, and
for lifting and lower schema mappings.

Example: the Trentino “Anagrafica stazioni meteo” service is a registry and should
be annotated as such, with a lifting transformation that transforms the sensor de-
scriptions into COMPOSE service descriptions.

This listing shows relevant excerpts of the source code of the Trentino open data
webpage, with highlighted hRESTS/MicroWSMO annotations for the “Anagrafica”
service:

��
������������������ �����	� ��
	���
���$��A
��
� �
���	
(�����������	��� �
������������������
���� ����� � �
������B�����
������A
��
�������6���A
��
��������
� ��8������ �
��������������	���� �
������������� ������������������-�����������������
��
��2$�����#������
�� � �
�������6$������#������
��8��� �
�����	
(��������������C����� �
�����������������	������C�������� �
����������
� �������������
��� �
������������������� ���������������������
���
��������(
���������
���$� �A
��
 ���
���������������������������������������
��� �		���� � ������ �
�����������	
(��������������� �
������������6)�����������������	���� �
�������������������� �������
���(��D�
����������D�������2$��(
�� � �
�������������� $���������(
������ 0� �
���������������������
��
�� �
��������������������� ������������������-�����������	+�=�+�*�����B��.���� 7
��
���� � �
��������������� �����������
������)'?��� 8 �
������������	
(�
�����
 ���� ��	
(��	
(�
���	
(���������������� �
����@������	��������A
��
����������
�����������
�� ������
���
�����
��(�������	�
�	��
��������.�
��
�
������A
� �
�������	
(�
���
 �

In case the reader is interested in the mapping between RESTful services and the operation-
centric MSM model, please refer to [5].

4 Microformats are a way of annotating human-oriented HTML documents such that machine-readable
structured data can automatically be extracted from them.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 24 of 37

2.3 Static and Dynamic Metadata

In the Internet of Things setting of COMPOSE, it is necessary to support services and service
objects dynamically entering/leaving the system (requirements ME-1, ME-2). A service object
or a service that has left the system and is re-joining it should see its description appropriately
updated, and clients that didn’t directly attempt to use the service while it was not available
should not be affected. Therefore, the object and service registry that uses the models defined in
this document should support the differentiation of static and dynamic metadata, requiring
minimal updates when the properties of an object or a service change.

The effect of these requirements on the service models is minimal: because the registry should
retain metadata of unavailable objects and services, it needs to handle such retained but inactive
descriptions appropriately, and for that, the particular service or object description must some-
how be marked as inactive. When a description is re-activated, the registry must facilitate an
efficient update of only affected properties (including metadata such as updated QoS and re-
views/recommendations), along with the inactivity mark.

This document proposes a nonfunctional property called 3��	�������)���������4���	����
(instance of ������?����
����/��������) to be used for an inactivity mark.

Example: a particular sensor in the Barcelona use case can be marked as inactive
simply by adding the appropriate model reference that points to the above inactiv-
ity-marking NFP:

�������$�����+�������$��(
���0�
� ����	����	��)��������� 	�������3��	�������)���������4���	���� �
��

Importantly, as the default discovery and query capabilities in the object and service registry
should not return inactive descriptions, this flag may turn out to be a primarily internal mecha-
nism, controlled by an API for object/service registration, de-activation and re-activation. The
registry may, however, need to be prepared to handle inactivity updates through a generic de-
scription update API.

When an object or a service rejoins the system, it is possible that some of its properties will be
changed. For instance, a mobile sensor may rejoin the system in a new location and with a dif-
ferent network address. Both the location (a nonfunctional property) and the network address
(part of the grounding information in the service description) should then be changed, before or
at the same time as the inactivity flag is removed.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 25 of 37

3 COMPOSE Vocabularies for Service Annotation

Having collected the core service description models in the preceding section, here we proceed
to propose several COMPOSE-specific vocabularies to be used in semantic annotations. These
vocabularies are intended as a starting point for the project, and they are expected to evolve.

We define vocabularies for three types of semantics:

1. High-level functional classification for COMPOSE services and objects (Section 3.1);
2. Examples of information model terms for describing service outputs (Section 3.2); and
3. Examples of nonfunctional properties for COMPOSE services and objects (Section 3.4).

The models presented in this deliverable are all shown in Figure 5. The bottom level contains
underlying service descriptions (whether in WSDL, or in HTML annotated with hRESTS). The
middle layer is the core semantic models from Section 2. The top level shows the three types of
semantics for which we define vocabularies in this section.

Figure 5: Stack of Service Description Models

After the discussion of information models in Section 3.2, Section 3.3 discusses considerations
for service message data lifting and lowering transformations.

The namespace for these vocabularies will be http://compose-project.eu/ns/web-of-things# and
its prefix is ������� . Note that the namespace must be used literally as shown.

3.1 Functional Classification of COMPOSE Services

The architecture of COMPOSE distinguishes between the following entities: objects, such as
sensors, actuators, and things in general, that are (themselves or by proxy) made smart and part
of the COMPOSE marketplace; service objects that make objects directly accessible to the
COMPOSE platform; services that provide value-added processing and/or business functional-
ity over service objects and other services; and finally applications that are human-facing units
made of services and service objects.

In this deliverable, we are concerned with the semantic descriptions of service objects and ser-
vices, therefore we propose the following hierarchy of distinguished functionalities, shown in
Figure 6. As COMPOSE starts to deal with further services, this classification can be extended,
or complemented with other classifications as appropriate – WSMO-Lite does not require a sin-
gle, overarching classification.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 26 of 37

Figure 6: COMPOSE service functionality classification

	�������5�)�����	� is the hierarchy root (instance of ���?����
����#����
�
���
��)���),
with two subcategories: ��������$��(
��&�-��� and ��������$��(
��#������
�� .�

	������������	�2��	� is the generic term for service objects, services that make objects
(such as concrete sensors) directly accessible to the COMPOSE platform, using a specific
protocol. There are two sub-categories: 	������������� and 	�������6	������ .

	�������5�)�����	���� is a service that registers objects. The Barcelona SOS service is an
example of such a collection. Corresponding to the types of service objects, there are two
sub-categories again: 	������������������	���� and 	�������6	�����������	���� .

Note that a single object can fall in multiple categories. For instance, a robot would likely be
both a sensor and an actuator, and a collection service could register both sensors and actuators.
It is unlikely, though, that a single service would be both a sensor and a sensor collection at the
same time.

The distinction between objects and service objects in COMPOSE means that we cannot di-
rectly align 	������������� with �����������3���	� .

3.2 Example Information Model Terms for Service Out puts

At this stage, we deal concretely with two kinds of services: sensor registries, and sensors them-
selves. For sensor registries, the output of the respective operation that lists known sensors
should be annotated as ����$��(
�� , as shown in the information model annotation example in
Section 2.1. In Section 3.3 below, we discuss how the output of such operations can be trans-
lated into MSM/WSMO-Lite service descriptions.

To distinguish sensors by what they observe, we can annotate the output of the respective ser-
vice objects.

WSMO-Lite requires an Information Model, whose components then can be used in semantic
annotations. The Semantic Sensor Network final report [6] comes with a “Library for Quantity
Kinds and Units: schema, based on QUDV model OMG SysML(TM), Version 1.2”, a schema
for dimensions and units, complemented with “Ontology for Quantity Kinds and Units: units
and quantities definitions”, “sourced from the UN/CEFACT Recommendation 20 code list”.
These two ontologies, to which we refer collectively as “the QU ontologies”, are an exhaustive
basis for an information model of sensor outputs.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 27 of 37

The QU ontologies by themselves capture generic dimensions: temperature, speed, angle, sur-
face density and so on, while for sensors we often want to be more specific. For illustration, we
could query, generically, for temperature sensors located in some area, however, such a query
could mix air temperature sensors in weather stations with engine temperature sensors in vehi-
cles and battery temperature sensors in electronic devices that happen to be in the desired area.
It is unlikely that an application would be interested in such a collection of sensors. Instead, we
should be able to formulate queries for “outside air temperature” sensors only, for instance.

The SSN report also comes with a Climate and Forecast ontology (CF) that provides dimensions
specialized to climate variables, including air temperature, wind speed, wind (from) direction,
and precipitation amount, that can be directly used to describe deployed sensors. The informa-
tion model annotation example in Section 2 uses the CF term for air temperature.

For dimensions that are not covered by the QU or CF ontologies, we may specify our own
terms, such as these (useful for the sensors registered in the Barcelona SOS service):

Example: the following two properties illustrate how COMPOSE can define spe-
cific dimensions for describing sensor outputs.

�������������
���E�����?������	
��E������0�
�������������F����
��G
�	������
���(������0�
���������������*���������
����������0�
�����	����������
������������
�
�������(������
��� ������
�������
�����������D
�&�����
�	���	
��'
����
�������0�
���������������*���������
���	
����
������/�������� 0�
�����	�������������D
�������������
�	�6�����	����� ������8����

These instances would be used directly in model references from operation mes-
sages and message parts, as shown in Section 2.1.

3.3 Lifting and Lowering Transformations

The SAWSDL example in Section 2.1 has already alluded to the issue of data lifting and lower-
ing. The SAWSDL view of data annotations is that a semantic client will use semantic models
for its data, and it will want to communicate with Web services that use XML messages. As se-
mantic models are on a higher level of abstraction, SAWSDL distinguishes lifting transforma-
tions that translate data from Web service messages into the semantic model, and lowering
transformations that translate data from the semantic model into Web service messages.

In COMPOSE, the RDF semantic data model is only used for semantic service descriptions,
therefore we may only need lifting transformations for object registries, such as the Barcelona
SOS service, or the Trentino “Anagrafica” service, whose outputs should be semantic service
object descriptions. However, if RDF does get adopted in other components of the project, more
lifting and lowering scenarios would be encountered.

We expect to deal with XML-based services (both SOS and “Anagrafica” happen to use XML)
as well as the expected JSON-based services, therefore we need to consider both data formats
for lifting and lowering mappings.

In general, lifting from XML into RDF can be practically implemented with a variety of XML
transformation tools, such as XQuery and XSLT.5 However, lowering from RDF to XML is
not a task for which XML tools are well-suited, because even though RDF has an XML syntax,

5 See http://www.w3.org/TR/xquery/ and http://www.w3.org/TR/xslt

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 28 of 37

the RDF graph data serialized to XML tree structures exhibits many inconveniences if proc-
essed as native XML. This situation led to the development of XSPARQL, a fusion language
that combines XQuery with the SPARQL RDF query language, and can natively access and
produce either RDF or XML data [11]. In effect, XSPARQL is suitable both for lowering and
for lifting between XML and RDF.

Because XQuery implementations are widely available, and XSPARQL lacks in this regard,
initially, we expect to use XQuery for the registry liftings. A particular transformation (for ex-
ample one tailored to the SOS GetCapabilities operation) will take the XML data coming from
the service, combine it with assumed and implicit information stemming from the service type
(here, as defined by the SOS standard), and lift it into MSM/WSMO-Lite service descriptions
annotated with COMPOSE-specific properties discussed in this section.

Lifting and lowering between RDF and JSON is, as yet, an unexplored territory. As an initial
solution (when COMPOSE needs one), we can suggest the language JavaScript, which is a na-
tive fit for dealing with JSON and has widely available execution engines, complemented with
an RDF data library such as rdfquery.6

3.4 Example Nonfunctional Parameter Types

For the initial requirements of the project, we will define in this section the following nonfunc-
tional parameter types: location, basic sensor quality-of-service properties, and description inac-
tivity to mark descriptions of objects that are temporarily offline. We reuse existing ontologies
where available, especially including the Semantic Sensor Network Ontology for sensor de-
scriptions. In Section 5, we list security properties that may also be modelled as nonfunctional
parameters.

Location

In the Smart City and Smart Territory use cases, object locations can be given in terms of geo-
graphic coordinates – latitude and longitude – using the basic W3C WGS84 vocabulary. As
shown in an earlier example, to mark geolocation information as WSMO-Lite nonfunctional
parameters, we use the following class:

��������"��7����
�����	������#����&������/�
��1��� ����?����
����/�����������

The Smart Space use case, on the other hand, may require indoors location information. Aligned
with the DOLCE Ultra Lite ontology7 and the SSN ontology, we define a class and a property
for pointing to relative locations:

��������)����
(�7����
�����	������#����&���������?� ���
����/�����������
�����������'H7/���
���7����
��������	��/��������0�
�����	���	���
�����������)����
(�7����
���0�
�����	����������	���/���
���/�������

With the above, the use case can define a set of locations, such as the stores and other places in
an indoor shopping environment; then objects can be annotated as located in those places.

Quality of Service: sensor measuring capabilities, operating restrictions

The Semantic Sensor Network Ontology defines the following properties that can be used to
describe the capabilities of a sensor:

6 http://code.google.com/p/rdfquery/
7 See http://ontologydesignpatterns.org/wiki/Ontology:DOLCE%2BDnS_Ultralite

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 29 of 37

� Accuracy, Drift, Precision, Resolution
� Detection Limit, Selectivity, Sensitivity
� Measurement Range
� Frequency, Latency, Response Time

The SSN ontology doesn’t provide concrete mechanisms for specifying these properties. The
only property actually described in the use cases in COMPOSE at this time is frequency; there-
fore we will illustrate how a sensor’s frequency can be described as a nonfunctional property.

Example: the Trentino sensors publish measurements every 15 minutes. Below, we
describe this in the SSN ontology, using a very direct and simple approach:

���*����
��$�����.����������#����
�
����
��������������.����������#����
�
���0�
�����	������������.�������������������������������� �������������
������������������%����D�����������(��
����(����+5� �
��������0�
�����������.����������/�����������*����
��$�����?�� ���������
�
���*����
��$�����?���������������?���������0�
�����	��(������+5�<<��	�������0�
���������
����
���
����H�
�&�*
�����
�
��������.����������#����
�
������	���#�����0�
�����	����������B������������������
�
������������� �
��������������������������
�����������������������(
�����0�
�����	������#����&������.����������#����
�
��1��
��������������������������?����
����/�����������

The above code defines one COMPOSE-specific term, 	����������������������2����4 ,
which is intended for SSN measurement capabilities that are also WSMO-Lite nonfunctional
parameters. Further, the code uses the Library for Quantity Kinds and Units ontology of units
(with the prefixes ��� and ��
��).

The measurement capability properties defined above can be seen as Quality of Service proper-
ties, describing how well a sensor can perform its sensing. Another type of Quality of Service
properties covered by the SSN ontology is Operating Restrictions, which includes the following:

� Maintenance Schedule
� Operating Property and Operating Range
� Survival Property and Survival Range
� System Lifetime

As the SSN ontology again provides no concrete mechanisms for such descriptions, we may
define appropriate mechanisms when the COMPOSE use cases need to model such properties,
and report them in Deliverable D1.3.2 “Service modelling and representation – Final version”.

Note that we expect further QoS terms to be defined by COMPOSE monitoring subsystems; we
can expect measured properties such as total downtime, fault rate etc., or aggregate properties
such as an estimated overall reliability of a service or an object. These properties can be mod-
elled similarly to the way in which the SSN models the sensor capabilities.

Inactive descriptions

As discussed earlier, the service registry needs to handle descriptions of objects that happen to
be unavailable. We propose here a nonfunctional parameter that marks the particular service or

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 30 of 37

object description as inactive. When a description is re-activated, the registry must facilitate an
efficient update of only affected properties, along with the inactivity mark.

The inactivity mark is named 	�������3��	�������)���������4���	���� and it is an in-
stance of ������?����
����/�������� . The registry may be implemented to use this mark
only internally, manipulated through a service deactivation/re-activation API.

4 Basic Service Description Metadata

Beside the semantics of the services and service objects described using the models from the
preceding sections, the semantic descriptions themselves may have metadata, such as time
stamps and provenance. In this section, we discuss suitable properties for such metadata.

Note that, at this stage, this metadata is expressly not intended for security purposes. For in-
stance, provenance information here should be a public indication of who submitted a given de-
scription (using a public identifier), rather than a private record of the owner of the description
(using an internal user ID) or even an audit log of submission/update actions in the system.

Time stamps

The Dublin Core Metadata Initiative vocabulary of metadata terms (DC) defines a number of
properties suitable for expressing various types of time stamp metadata:

� 	��������	 should indicate when the description was first published in the COMPOSE
service and object registry. This property should not change during the lifetime of a sin-
gle service description.

� 	����	
�
�	 should reflect the time of the last update of the service description.
� 	���(�
����� can indicate when a service has last become available after leaving the

system and re-joining it.

These properties should primarily be expressed on ����$��(
�� , but these time stamps can also
be expressed on individual properties: for instance, the inactivity NFP flag should have its own
	��������	 so as to indicate when an object last became offline.

Provenance

With respect to service descriptions, there are two distinct types of provenance information that
are significant in COMPOSE: what does the description pertain to, and where does the service
description come from.

The first kind can especially express the relation between a service object and the underlying
smart object. For this, we use the following DC property:

� 	�����-��� points to a smart object from an ����$��(
�� that represents a service ob-
ject which gives access to that smart object.

Note that multiple service descriptions can point to the same smart object. First, a complex
smart object may incorporate multiple sensors and actuators, and for reuse it may be suitable to
represent them as individual service objects in COMPOSE. Then each of those service objects
will be a partial view of the underlying smart object. Alternatively, two third-party developers
may submit different descriptions of the same public smart object, using their own domain on-
tologies. These two descriptions would then be complete and, in a sense, competing representa-
tions of the same object.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 31 of 37

The second kind of provenance details the origin of a description. Here, we have a choice of
several DC terms, as follows:

� 	��������� indicates the agent who created this service description – usually the same
as the agent who made this service description available to COMPOSE.

� 	������
���� should point to the COMPOSE service and object registry; this link is
useful when service descriptions are viewed as Linked Data outside of the immediate
context of COMPOSE infrastructure.

� 	�����(������ can point to a more detailed statement of provenance; in the words of
the DC specification, it is “a statement of any changes in ownership and custody of a re-
source since its creation that are significant for its authenticity, integrity, and interpreta-
tion”.

� 	�������� should point to an external source of this service description, in case it was
imported to COMPOSE from elsewhere.

The PROV ontology [12] allows for further elaboration on the agents, activities and entities in-
volved in the provenance of a service description. DC creator, publisher and source properties
have mapping to the PROV ontology. The PROV ontology should be considered in future if
complex (yet machine-readable) provenance statements are desired in COMPOSE service de-
scriptions.

5 Preliminary Security- and Trust-related Aspects

This section analyzes the requirements for the service models and representations from a secu-
rity point of view. For this purpose we analyze the security properties and mechanisms envi-
sioned for COMPOSE and translate them into descriptive modelling aspects.

5.1 Security Metadata

Here, we list security properties and parameters which need to be modelled for a service specifi-
cation to support the security architecture and infrastructure defined in the security work pack-
age WP5.

Access to registry data

Most of the data stored in the registry may become privacy critical. In particular, if private per-
sons start to share data collected by their smart objects with the COMPOSE framework. Thus, a
service object or service may specify permissions required to access metadata stored in the ser-
vice or service object registry.

The precise format of such collections of permissions will be the focus of future work in this
project. In fact, the data discussed in this subsection may become obsolete as we may only dis-
tinguish between publicly accessible descriptive data and private descriptions only visible to the
COMPOSE core. However, to configure the visibility in a more flexible way which also allows
for owner modifications, we stick with this type of access right specification.

Owner

The specification of an owner of a service is essential for accounting, reputation management,
the change of security settings, and the registry settings in general. The specification of an

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 32 of 37

owner strongly depends on the identity management used in COMPOSE. Thus, the detailed
specification of this parameter is still subject to development and will be specified in later deliv-
erables.

Developer

As COMPOSE foresees the accumulation of reputation data it may become necessary to distin-
guish between the owner of a service, i.e. the person, company, or entity who deployed the ser-
vice or service object and the developer of the service or device. This would also allow the
collection of accounting and reputation information.

Both parameters strongly depend on the identity management used in COMPOSE. Here, we
may borrow from various established or new technologies, such as LDAP, Active Directory,
Kerberos, Mozilla Persona, or similar technologies.

Security Capabilities

For secure communication and access of and to the service, it is required to specify its security
capabilities. To decide whether it can be used for the security and privacy critical operations, a
device needs to specify essential security primitives for

� confidential communication,
� ensuring integrity of protected data in a communication channel, and
� reliable authentication of communication partners.

These capabilities can be specified in terms of specific algorithms available in the service or
service object. We can use comparable descriptions to those used by SSL or TLS when perform-
ing a handshake and specifying the available cryptographic suites.

Further mechanisms which need to be specified are

� The available access control domains accessible by the device, i.e. the domain of the
policy decisions points (PDP) the enforcement points in a service or service object are
connected to. These PDPs decide which user can access functional data generated by
the service.

� Similar holds for the accounting. We specify the domain of the COMPOSE entities for
which the service or service object can accumulate accounting information. Thus, if any
internal COMPOSE core functionality requires to access accounting information, it can
query the accounting management entity in this domain.

We envision specifying the available cipher suites or cryptographic primitives similar to the tex-
tual specifications as commonly used in SSL cipher lists. The format of access control and ac-
counting domains borrow from the common domain names as specified in RFC 1034 and its
updates.

Service Certificate

Every service or service object owns a certificate which can be used for service authentication,
service integrity protection, and origin authentication of data sent by a service.

The certificate must be generated by the service itself and can be signed by a COMPOSE Certi-
fication Authority (CA). Self-signed certificates are allowed in COMPOSE. However, such cer-
tificates imply a reduced trust in signed information provided by the device.

This property can also specify how the corresponding private key is stored on the device, i.e.,
whether it is kept in a trusted hardware device or whether it is kept in regular device storage.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 33 of 37

Certificates are stored in the widely used X.509 format.

Service Signature

To ensure the integrity of the information provided by a service, a signature of specific meta-
information stored about a device is generated. It needs to be update if this meta-information
changes.

Also this format still needs to be decided. We plan to use some cryptographic standard which
complies with the IETF standard of the Cryptographic Message Syntax (CMS). Many common
standards such as S/MIME or PKCS#12 comply with this syntax.

Reputation Information

Similar to access control and accounting, we specify the COMPOSE domain responsible for
accumulating reputation information. If any internal COMPOSE core functionality requires to
access the reputation information to compute the trust value for this service, it can query the
reputation management entity in this domain.

Apart from a link to the management entity, this type of information specifies which feedback is
expected for the service. To accumulate reputation, some metrics need to be defined. It is used
by other COMPOSE entities to report whether the service provided good, bad service, erroneous
or correct information, showed expected behaviour, e.g. acted compliant with preconditions and
effects or used the promised security protocols. As the notion of trust (see also Section 5.2) en-
visioned for COMPOSE will not only draw security properties into consideration, we will dis-
tinguish different types of reputation. They can be grouped to define specific notions of
reputation and trust.

As the reputation management system is under development and it still unclear which type of
reputation COMPOSE is going to support or require, we cannot specify this type of registry in-
formation further, yet.

Preconditions and Effects

WP5 develops and will deploy analytical mechanisms which can provide details about the proc-
essing of information. For this purpose and for efficiency reasons, services and service objects
must provide information about the flow of information internal to a service, the potential side
effects the invocation or execution of a service may have, and the requirements for the safe exe-
cution of a service, or the maintenance of its functionality. Such conditions can be expressed in
terms of preconditions and effects (also denoted as post-conditions).

Preconditions describe conditions on data which need to be satisfied before the use of a service,
e.g. the authentication of a user, membership of user in a specific group, input data must not be
encrypted, the setup of an authenticated and secure communication channel etc. Thus, precondi-
tions are a mixture of conditions for functional as well as nonfunctional properties.

On the other hand, effects describe the impact of service execution on the security state of the
user, service, device, data, system (e.g. the change of a file on the file system).

Further, effects reflect the security properties of the output data (e.g. encrypted, authenticated,
public), or the inheritance of security properties from the input data. In particular, the latter ac-
counts for the specification of flow information.

Preconditions and effects can be defined using logical combinations of well defined logical
propositions defined over input, output parameters, as well as any COMPOSE entity. As these
conditions will heavily depend on the usage control and provenance framework deployed in

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 34 of 37

COMPOSE, the precise definition of the language used for the condition specification must be
postponed to a later deliverable.

An example for a possible precondition on a functional parameter would be a predicate unen-
crypted(param1) which specifies that some parameter param1 of a service must not be en-
crypted, otherwise the service would not be able to operate. An example for a nonfunctional
precondition is notPrivate(param1). Again, this specifies the requirement for parameter param1
not to be private. Thus, as soon as the respective service to process confidential data in parame-
ter one the COMPOSE core would trigger some security action. This precondition can be com-
bined with other conditions or predicates defined over other parameters or system properties,
such as time, location, etc.

Effects (or postconditions) specify properties which hold after the service was executed. Thus,
possible security related effects may include predicates which specify changes in global service
states, e.g. some communication channel changes from an open channel to a confidential and
authenticated channel. As for preconditions, effects can also be specified over input parameters
using predicates and their combination with other logical expressions concerning either other
parameters of the service or contextual states of COMPOSE. An example could define the
predicate store(param1, target) which specifies that the service stores parameter param1in the
location target which can specify a device, file, or query.

5.2 Security and Trust Ontology

In due course of this project we will propose a unified vocabulary as part of a COMPOSE secu-
rity ontology. It will be the basis for the annotation of the security metadata introduced in Sec-
tion 5.1. However, at this early stage of the project some of the concepts may change and are
currently hard to specify in detail. Many aspects discussed in this section will become clearer as
soon as the architecture definition has been consolidated.

In general, we intend to define for each property a concept that will link to the MSM ontology
as follows:

��������B�����)�
����'�����	������#����&��������?� ���
����/����������

Each concept will be defined with a specific set of parameters, e.g. the details of the person or
company that developed the service. In some cases a pre-defined set of instances will be made
available to be selected when annotating a service, e.g. listing the possible security capabilities
for a service.

Nevertheless, we can already list first thoughts on a trust ontology we envision for COMPOSE.

Trust Ontology

The meaning of trust and strategies for calculation (classification) of trust of services may differ
for different types of services as well as for different contexts where the services can be used.
Trust of a service in some use-context of that service may significantly depend on certain non-
functional parameters, which could be of minor significance for other use-contexts of that same
service, or of other services. In addition, from a user perspective, it could be difficult to set
many nonfunctional parameters that will impact the ranking of discovered services. Conversely,
a user might more easily link to pre-defined specific combinations of nonfunctional properties
that capture his/her perception of trusted service in a given context.

In this view, we aim to investigate a COMPOSE Trust Ontology (i.e. Trust Model) that should
be able to provide for such variability of the trust perception. Different trust perceptions require
different trust-classification strategies to determine the level of trust of a service. COMPOSE

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 35 of 37

Trust Ontology should be able to provide an answer when asked for a trust-classification strat-
egy for a given set of nonfunctional service parameters including the service use-context, i.e.
trust requirements. COMPOSE Trust Ontology can provide an answer if needed knowledge is
encoded into Trust Ontology (design-time) and then, by querying the Trust Ontology in a trust
resolution time (i.e. at run-time when the actual service context is available).

Rules defined atop the COMPOSE Trust Ontology might be used to derive specific levels of
trust of a service. For example, one could define rules, using common rule languages, such as
SWRL or Jena8 and Custom Jena Built-ins, and then utilize existing reasoning engines to exe-
cute rules to resolve the level of trust of service. The resulting trust engine assumes that trust
requirements are expressed using the COMPOSE Trust Ontology.

COMPOSE Trust Ontology should provide for the annotation of nonfunctional properties of
COMPOSE services in Section 3, such as service location parameter, QoS parameters (e.g.
sensing frequency, sensor response-time), user recommendation parameters or security-related
parameters (e.g. service owner, service developer, service authentication, service authorization,
service confidentiality, service credentials). Each parameter requires metrics. COMPOSE Trust
Ontology may capture the needed parameter-metric relationships.

Whether the COMPOSE Trust Ontology builds atop the COMPOSE Vocabularies for Service
Annotation and/or atop some already available ontologies which may be suitable for the annota-
tion of nonfunctional parameters of COMPOSE services, is an important question/decision.
Taken approach may influence decisions in the overall design of COMPOSE Trust Ontology
and its use. Among available ontologies are the Recommendation Ontology9, Security Mecha-
nisms Ontology10, and Credential Ontology11. Certainly, those ontologies may be useful as base-
line models and knowledge resources for development of the COMPOSE Vocabularies for
Service Annotation, thus, for development of the COMPOSE Trust Ontology.

Dynamics of COMPOSE Trust Ontology may also be an important consideration. If the
COMPOSE Trust Ontology is going to be frequently evolving and possibly changing over time
to capture new requirements, then solutions for the managed evolution of Trust Ontology and
propagation of changes into already established service annotations should be well-engineered.
A research effort performed within EU FP6 NeOn project has brought some ontology engineer-
ing solutions for ontology evolution and management.

OWL DL can be taken into consideration as a representation language for Trust Ontology. It fits
Semantic Web needs, has RDF as the underlying representation model, may be aligned with
WSMO-Lite, and most importantly, may provide for automated consistency checking of
COMPOSE Trust Ontology, automated classification of concepts in COMPOSE Trust Ontol-
ogy, and for inference on trust descriptions. Also, the above mentioned Recommendation On-
tology, Security Mechanisms Ontology, and Credential Ontology are available in OWL DL.

Finally, for the trust of services, special considerations should be made in cases when a
COMPOSE service is, in fact, composed of several other COMPOSE services (i.e. trust propa-
gation from service object descriptions to service descriptions). Not less important may be the
mutual trust – i.e. a service requestor wants a trusted COMPOSE service, however, the
COMPOSE service also wants a trusted service requestor. Suitable trust solutions will be
needed in the cases of the trust composition and mutual trusts.

8 https://jena.apache.org/documentation/inference/
9 http://smiy.sourceforge.net/rec/spec/recommendationontology.html
10 http://www.daml.org/services/owl-s/security/security.owl
11 http://www.daml.org/services/owl-s/security/credential.owl

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 36 of 37

6 Summary and a Look Forward

In this deliverable, we have put together the baseline models for service descriptions to be used
in COMPOSE, building on the results of the project SOA4All. Guided by real-world services
from the project’s use cases, we have also gathered further relevant ontologies (especially the
Semantic Sensor Networks Ontology) and we have proposed lightweight COMPOSE-specific
vocabularies for aspects where we found no suitable existing ontologies to re-use.

The core ontology, and the topic of Section 2, is the Minimal Service Model (MSM), which pre-
sents a simplified operation-oriented understanding of services, and maps straightforwardly to
WSDL descriptions (such as we have for the Barcelona SOS service). On the side of RESTful
services and APIs (such as the Trentino data sources), where WSDL is usually not available, we
adopt the hRESTS microformat that gives MSM structure to plain-HTML documentation.

On top of the MSM, we use SAWSDL annotations (in the native SAWSDL XML form for
WSDL, or in the form of the MicroWSMO microformat over hRESTS) as a standard way of
attaching semantics to service descriptions. To structure the semantics, we use the WSMO-Lite
service semantics ontology, which distinguishes four types of service semantics: functional,
nonfunctional, behavioural, and information-model semantics.

The COMPOSE-specific vocabularies presented in Section 3 are all built on top of existing on-
tologies, and they use the lightweight terms of WSMO-Lite. We propose a simple initial classi-
fication of service functionalities into sensors, actuators, and collections (registries) thereof;
sample information model terms for some of the sensors, and various nonfunctional properties.

In Section 4, we have specified the use of Dublin Core terms for basic service description meta-
data, intended for informational purposes only as part of public service descriptions, without
strong security- and trust-related intentions. Security, reputation and trust are discussed in Sec-
tion 5, at this stage of the project only as an initial sketch of future work.

This document should serve as a common basis for the project’s efforts around publishing, dis-
covering, and composing services and service objects. It is not meant as a comprehensive single
model that would be set in stone, rather it is the first convergence point that can kick-start de-
pendent efforts. The common set of ontologies, whether external or COMPOSE-specific, will be
maintained in a public, up-to-date resource, for the benefit of project partners as well as third
parties who may reuse the work.

This first version of the Service Modelling and Representation report presents only initial secu-
rity and trust-related aspects, and it only covers external features exposed by services, without
considering internal details, such as the information and control flows in composed services. We
expect that refinements in these directions will add declarative and/or rule-language-based
specification of business logic, to express service compositions and to support service reactivity.

Also out of scope of this deliverable is the specification of how to process semantic descrip-
tions, or where to deploy them. It is likely that some services and smart objects may be able to
provide their own descriptions, while others will need external descriptions. We have not at-
tempted here to comment on the interaction between the COMPOSE service and object registry
and the services and objects that join and leave the system, beside raising the point of inactive
service descriptions that can be retained to simplify the process of objects and services re-
joining the system.

Finally, the semantic models are presented in the RDF graph model, the standard basis for the
Semantic Web and for Linked Data. Nonetheless, it may be suitable for easier interoperability to
make service descriptions available in a JSON format (likely as JSON-LD). Especially higher-
level tools and APIs that process service descriptions, such as service discovery, may benefit
from the simplicity of using JSON for messages.

FP7-317862—COMPOSE Collaborative Open Market to Place Objects at your Service

© D1.3.1 Service modelling and representation – First Version Page 37 of 37

References

[1] M. Maleshkova, G.A., Rey, A. Simov, A., B. Renie, D. Liu, “Service Provisioning Platform
Second Prototype,” Deliverable D2.1.4 of the project SOA4All, 2010, available at
http://soa4all.eu/file-upload.html?func=startdown&id=229

[2] C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopecky, and J. Domingue, “iServe: a
linked services publishing platform,” 7th Extended Semantic Web Conference, Ontology
Repositories for the Semantic Web Workshop, 30 May - 03 Jun 2010, Heraklion, Greece.

[3] http://www.w3.org/TR/sawsdl/
[4] T. Vitvar, J. Kopecký, J. Viskova, and D. Fensel, “WSMO-Lite Annotations for Web Ser-

vices,” Semantic Web: Research and Applications, Springer, Lecture Notes in Computer
Science, 2008, Volume 5021, pp. 674-689,

[5] J. Kopecky, K. Gomadam, and T. Vitvar, “hRESTS: An HTML Microformat for Describing
RESTful Web Services,” International Conference on Web Intelligence and Intelligent
Agent Technology,” WI-IAT '08. IEEE/WIC/ACM, pp.619-625, 9-12 Dec. 2008.

[6] L. Lefort, C. Henson, K. Taylor (editors), “Semantic Sensor Network XG Final Report,”
W3C Incubator Group Report, 28 June 2011, available at
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/

[7] W3C XML Protocol Working Group, “SOAP Version 1.2,” Recommendation (Second Edi-
tion), 27 April 2007, available at http://www.w3.org/TR/soap12

[8] W3C Web Services Description Working Group, “Web Services Description Language
(WSDL) Version 2.0,” Recommendation, 26 June 2007, available at
http://www.w3.org/TR/wsdl20/

[9] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - The Story So Far,” Intl Journal on
Semantic Web and Information Systems, Spc. Issue on Linked Data, 2009.

[10] W3C Provenance Working Group, “PROV-O: The PROV Ontology,” Proposed Recom-
mendation, 12 March 2013, available at http://www.w3.org/TR/prov-o/

[11] A. Polleres, T. Krennwallner, N. Lopes, J. Kopecký, and S. Decker, “XSPARQL Language
Specification,” January 2009. W3C member submission, available at
http://www.w3.org/Submission/xsparql-language-specification/.

