
�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)�����*�	� �

Collaborative Open Market to Place
Objects at your Service

D1.2.1

Initial COMPOSE architecture document

Project Acronym COMPOSE

Project Title Collaborative Open Market to Place Objects at your Service

Project Number 317862

Work Package WP1 COMPOSE architecture design and specification

Lead Beneficiary IBM

Editor Benny Mandler IBM

Reviewer Iacopo Carreras UH

Reviewer David Carrera BSC

Contributors TSC ALL

Dissemination Level PU

Contractual Delivery Date 31/10/2013

Actual Delivery Date 31/10/2013

Version V1.0

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��
��*�	� �

Abstract

The COMPOSE project aims to perform research leading to the development of an IoT platform
that will easily enable relevant stakeholders to be engaged. Stakeholders include (i) developers,
who wish to develop services and applications based on real-world smart objects (ii) Smart
objects providers and owners who wish their smart objects to be exposed and available to
developers, and (iii) end-users who wish to make use of existing services and applications. The
goal is to create such a platform that will automatically take the burden off the identified
stakeholders and enable each one to concentrate on their areas of expertise while leaving all
systems related aspects as well as productivity related aspects for the COMPOSE platform to
handle.

The main aim of this document is to explain in detail the architecture of the proposed platform
including main aspects driving to this architecture and the manner in which the proposed
architecture will enable achieving the ambitious goals set out at the beginning of this journey.
This document was thought of and written with the requirements document (D1.1.1 "COMPOSE
requirements") in mind, and the forming use cases as a constant validation and reference point.

This deliverable represents the first complete version of the architecture document, but is not
seen as the final product, rather it is the first step in an iterative process that will be further
refined as we advance with the design, implementation, and validation of different aspects of the
project. The final COMPOSE design document is due in M24, a year after this document. We
took such an approach due to the complexity and multi-dimensionality of the proposed platform,
thus, this document serves as a starting point from which all individual tasks in the technical
WPs can start from, but we leave room for improvements and for getting things right as we gain
actual experience in the development parlours. In addition, possible changes in the
requirements document will have to be reflected in future versions of this design document.

In this document we start from a high level description of the architecture and then delve into
more detailed explanation of the different components, and the interactions thereof. In addition
the main ideas and interactions are demonstrated through the introduction of the platform as
viewed by the main stakeholders, as well as by mapping the intended use-cases to the proposed
architecture.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)�����*�	� �

Document History

Version Date Comments

V0.1 04/06/13 Initial version

V0.2 12/06/13 Comments from FOKUS, BSC, CN, PASSAU,
Abertis, OU

V0.3 11/08/13 Third draft ready for partners to contribute their
designated sections

V0.4 10/09/13 Incorporate comments from INN, BSC, W3C

V0.5 20/09/13 Incorporate contributions from FOKUS, CN, BSC

V0.6 02/10/13 Incorporate contributions from OU, Abertis, UH

V0.7 15/10/2013 Incorporate contributions from Passau,

V0.8 20/10/2103 Incorporate changes from the post F2F architecture
deep dive

V0.9 25/10/2013 Integrate all last contributions from partners

V1.0 29/10/2013 Consolidate a final version

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��+��*�	� �

�

Table of Contents

,��������$$$�

-�����*���)!����$$�	

-�����*�.������$$��

,���� (��$$$��

� %����'!������$$�/

�$� ��������0!���(��������'��)�����&������&�����!���$$$ $$$���

 ,��&�����!���1�)&�������2��3�$$$���

$� ���������������$$��+

$�$� 4����������$$��+

$�$
 ��������������$$��5

$�$� ���������$$��	

$�$+ ��(����������$$$��	

$�$5 ,������������$$$��	

$
 ����*��(�%����������(��������$$���

$
$� 6!����(���������(����$$���

$
$
 ��������'���� (������'�������������3��&����������� �����$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$���

$
$� #����������������$$���

$
$+ 6�)���� �$$��/

$
$5 ���!��� ���*����(����$$�
7

$� �!����)����������)��&���8��&���&������������$$$$$$$ $$�
7

$+ 6��������&���3��&�%�.�,�$$�
�

� ������*��(������&��'����������������$$$$$$$$$$$$$ $$$�
�

�$� ����*��(������'��9�!���*��&����:�'���� (����$$$$$$ $$$�
+

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��5��*�	� �

�$
 4���������������'��9���)������������'������������ ���(���)�(����$$$$$$$$$$$$$$$$$$$$$$�
5

�$� #��������9������������'�,���������������������$$$$$ $$�
	

�$+ ��'�!���9�%�����������3��&��&������*��(�$$$$$$$$$$$ $$$�
�

+ #������'�'���)��$$�
�

+$� �!���������,�������������*����������������$$$$$$$ $$$�
/

+$�$� ��������������$$�
/

+$�$
 ���������$$���

+$�$� ,������������$$$��+

+$
 ���������*��(���(�������$$��5

+$
$� ���!��� �$$��5

+$
$
 #����(���)�(����$$$���

+$
$� #������� ���������$$$��/

+$
$+ %�.�����9��&������*��(�6!��.�(��$$�+7

+$
$5 �����������((!�����������*�����!��!���$$$$$$$$$$$$$ $$$�+�

+$� #���������*����)�$$�+	

+$�$� �#;�$$$�+	

+$�$
 %#��$$�+�

+$�$� <=%�$$$�+�

5 �:������������*�������'����&����)����������������� ���$$$�+/

5$� 4���������$$$�+/

5$
 #����������$$$�57

	 ������)��&��!�������������&�����&�����!���$$$$$$$$$ $$$�5�

	$� �(����������$$$�5

	$
 �(������� �$$$�5�

	$� �(����.������� $$$�5+

� �!((�� �$$$�5	

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��	��*�	� �

� ,����'�:���8�%�.�,�$$�5�

/ >�����)���& �$$�	�

List of Figures

��)!����9���������(��������$$$�/

��)!���
9�,��&�����!����&�)&���������(��������$$$$$ $$���

��)!����9���������������������$$$��5

��)!���+9���������)���� �$$��/

��)!���59��������(�������*��3��$$�
+

��)!���	9�����������*��(��!����(���!������$$$$$$$ $$�
5

��)!����9����������������*��3�$$$�
	

��)!����9�,��&�����!�����������)���)������$$$$$$$$$ $$�
/

��)!���/9�-�*�� �����*�����������$$$��
�

��)!����79����������(���)�(����������$$$$$$$$$$$$$$ $$$��
�

��)!�����9���(�����������)�������&�����!���$$$$$$$$ $$$��

��)!����
9�������������((��'������&�����!���$$$$$$$ $$��+

��)!�����9����!��� �,��&�����!���������3�$$$$$$$$$ $$��5

��)!����+9�#��������)�(�������3�$$$��/

��)!����59���������#������� �������$$�+7

��)!����	9����!'���!�'� ����&�����!�����������3�$$$ $$�+�

��)!�����9�������������!'���!�'� �$$$$$$$$$$$$$$$ $$�+

��)!�����9���((!���������%�*�����!��!���$$$$$$$$$$$ $$�+��

��)!����/9���((!���������&������&�����'���)��$$$$$$ $$$�+�

��)!���
79����!��!��'�������) �$$$�+�

��)!���
�9����������������%����*�����$$$$$$$$$$$$$ $$$�57

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)�����*�	� �

��)!���

9�,�%�&�)&����������&�����!����������3$$$$ $$�5�

��)!���
�9��(������� �������$$$�5+

��)!���
+9��(����.������� �������$$$�55

��)!���
59�������)���(�����������4���$$$$$$$$$$$$$$ $$�5	�

��)!���
	9�������)���(�����������4���$$$$$$$$$$$$$$ $$�5	

��)!���
�9��!�����������'���$$$�5	

��)!���
�9�%�.�,�-�)�����2��3�$$�5/

List of Tables

.������9�,���� (��$$$���

.�����
9�6�0!���(�������,��&�����!���(�����)�$$$$$$ $$��
�

.������9�%�.�,���������(��������$$$$$$$$$$$$$$$$$ $$�
��

.�����+9�������)�%�.�,�*!������������&�����!������� ��������&�����!���$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$�

�

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)�����*�	� �

Acronyms

Table 1: Acronyms

Acronym Meaning

API Application Programming Interface

CA Certification Authority

COMPOSE Collaborative Open Market to Place Objects at your Service

CRUD Create, Read, Update and Delete

EV Electric Vehicle

GUI Graphical User Interface

IaaS Infrastructure as a Service

IDE Integrated Development Environment

IDM Identity Management

IoS Internet of Services

IoT Internet of Things

PaaS Platform as a Service

PDP Policy Decision Point

PEP Policy Enforcement Point

SDK Software Development Kit

SO Service Object

UAA User Account and Authentication

UC Use case

WO Web Object

WP Work Package

�

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��/��*�	� �

1 Introduction

As ever more internet connected smart objects are being put into use, touching upon many
aspects of life and society, while producing large amounts of data, not enough emphasis has
been placed on the creation of useful services and applications making good use of all the
available smart objects. Internet of Things (IoT) has been coined as the term to describe such an
environment. Even though there are various efforts for providing services for the IoT, what
seems to be missing is an integrated 'development- delivery platform’ for this field, which will
follow the process of creating such services from its inception, through its design and
implementation, all the way to its deployment and execution. Such a platform would enable IoT
based services to go main stream. COMPOSE aims to tackle that ambitious goal, and along the
way unleash the full potential of the IoT by providing a platform that will make it easier for
smart objects providers to offer their service on the one hand, while making it easy for
individual developers and SMEs to create and deploy innovative services based on the available
smart objects on the other hand.

COMPOSE aims to provide a technological platform for easily creating services based on the
Internet of Things. As a consequence, the simplification of absorbing internet connected smart
objects into the platform, and using them in the creation of new services is a centre piece in the
COMPOSE architecture. In addition, a developer portal is envisioned to provide easy access to
the platform for developers to create and publish new services. The developers' portal in turn
will interact with a cloud-based supporting run-time which is designed to automate many
aspects of the deployment and execution aspects.

COMPOSE will ultimately provide an open and scalable platform infrastructure, where smart
objects will be ingested and represented in the platform in a readily available form ready to be
consumed by services that may be combined, managed, and integrated in a standardized way, to
easily and quickly build innovative applications in a secure manner.

�

Figure 1: Main Components

�

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)���7��*�	� �

Figure 1 depicts a high level schematic view of the COMPOSE platform. External stakeholders
interacting with the platform are either (i) developers, introducing new services into the
platform via a developers' portal, or (ii) smart objects owners / providers, who wish to have their
objects available through the platform, or (iii) end-users consuming services and applications
provided by the platform. The developer interacts with the platform via a developers' portal that
enables him to locate existing COMPOSE entities (in the form of services) which are of interest
to him, and create new services potentially based on existing ones. In the process of creating
new services the platform may help the user via recommendation capabilities as well as an
assisted composition service. The components marked in pink represent COMPOSE developed
capabilities provided via the platform that help developers in their interaction with the platform
to devise new services. The "pink" capabilities are supported internally by a services registry
which holds semantically searchable data on COMPOSE entities that exist in the platform, or
are publicly available as services ready to be used in the platform (e.g., external Weather API).
On the other hand components marked in blue represent end products that will be created by the
developers and may be made available to other developers and end-users.

Components marked in yellow in Figure 1 represent internal platform capabilities which are at
the core of the running platform. The data management layer is in charge of absorbing all data
flowing in from the external smart objects and performs all calculations and transformations
required by running COMPOSE services. Security interactions take place at different layers of
the platform, from static analysis at services creation time to dynamic monitoring and
enforcements of data flows and security policies at run-time. The monitoring component will
aide the platform management layer by providing information about the state of different
entities and aspects of the running system. When a developer is ready with a new service he can
use the automatic deployment platform capability to introduce the newly created service and
make it runnable and hosted by the COMPOSE platform.

Components marked in light blue represent the base infrastructure on which COMPOSE entities
run on and communicate. The cloud based run-time will host all COMPOSE entities, while the
communication infrastructure will ensure proper communication between running entities.

End users on may interact with the platform via a thin end-users portal. The portal may serve as
a meta market place pointing to existing COMPOSE related applications.

In Figure 1 the recommendation and discovery components aided by the internal registry
represent design time activities and capabilities while the rest of the figure focuses on run-time
activities.

Key to the establishment of the COMPOSE vision are innovations spanning several areas:

� IoT Platform as a Service – will provide a customized cloud based platform to ease the
development, deployment, running, and consumption of IoT based services.

� Developers' portal – Will help external developers throughout the cycle of creating a
new service based on smart objects. From locating the desired base services, through
the addition of user defined logic, and composition with additional services, all the way
to the automatic advertisement and deployment of the newly created service.

� Designing, implementing and exposing the smart Objects as a Service concept –
including ingestion of smart objects into the platform in an easy and standardised
manner, with standard access to objects' data and calculation based on it.

� Extensive use of semantic based technologies to drive the external developers'
experience by populating an internal registry of semantically enhanced services that is
exposed externally via an entity discovery mechanism. These technologies will serve as
the basis for a composition and recommendation engines which should significantly
ease the developers' burdens.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)������*�	� �

� Security and trust will be kept within the platform and will be transparent to the user to
a large extent and will alert the user upon the discovery of potential risks. This aspect
will include data provenance capabilities that will track the path the data takes and its
associated policies.

� Scalable communications technologies will connect all COMPOSE entities providing
membership services as well as advanced group communication capabilities.

� Standardization – the COMPOSE project is trying to stimulate innovation and
acceptance in the field also by adopting an open and standardized approach. Having
W3C on board and reaching out to external interested parties is the way we see for
going forward.

The main outcomes of the project are the architecture specification, and a reference
implementation of a customized IoT Platform as a Service (PaaS), including all detailed internal
and external facing components. PaaS refers to a cloud computing concept which offers the
developer and deployer of cloud based applications the infrastructure needed for creating and
deploying successfully such applications on a cloud environment. Basic services and libraries
are provided by the platform as well as the HW and management components needed to run the
applications.

This document focuses on defining a high level platform architecture and is the first release,
which will be further developed and detailed in a consecutive document release. Thus, this is
envisioned to be a live document which will be a central point for all major advancements in the
understanding of the underlying technologies and their interactions. The goal of this document
is to form the basis for all COMPOSE components designed and implemented in the various
Work Packages (WP), as well as highlighting the interactions between the different WPs and
tasks.

The rest of the document is structured as follows. Section 1.1 discusses the main set of
requirements that led to the establishment of the current architecture. A high level view of the
COMPOSE architecture and its main component is presented in Section 2. Then, in Section 2.3 3
the platform is introduced from the point of view of the different stakeholders. Section 4 dives
deeper into a more detailed design of the different components and layers within the platform.
Section 5 provides further details as to the modes of interaction between external entities and
the COMPOSE platform. Finally, Section 6 provides an introduction of the planned use cases
and maps their planned activities to the architecture presented, validating that the design put
forward can indeed cover the envisioned pilots.

1.1 Major requirements leading to this architecture

The "first among equals" in the long list of COMPOSE related requirements leading to the
presented architecture is that of consumability, namely making the system easy to interact with
for the main group of target audiences, namely developers. In the developers role we include
both service developers (more sophisticated developers) as well as people wishing to integrate
their Smart Objects into the platform. This requirement, with its main implications on the
external world outside the COMPOSE platform, drives the way in which internal components
are designed and operate, with as much automation, and XaaS (Everything as a Service)
philosophy, starting from the smart objects themselves, all the way to the design and
deployment of the run-time hosting the platform.

The requirement for usability leads immediately to the requirements set around semantics
support. The platform intends to collect and semantically enhance in an automated manner to
the extent possible, information concerning the different entities residing in the system which

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)���
��*�	� �

external developers and end-users can make use of. The automatic process will be accompanied
by an easy to follow process for external entities to add semantic information that will make the
system as a whole more usable. The semantics information will be used by the helper
components of discovery, composition and recommendation.

Security and privacy related issues appear prominently as potential sources of worry whenever
Internet of Services (IoS) based on IoT related technologies are discussed. We intend to take a
"security by design" approach rather than an after-the-fact approach and have security related
aspects interleaved within the different components to reach a secure and privacy preserving
platform. Security aspects will take effect from the developers portal, while a developer has
created a new service, it will be passed through the deployment phase in which static security
analysis of the deployed entity will be performed, and all the way to be engrained within the
run-time for monitoring the flow of data and information with their respective policies.

Since the number of smart objects connected to the Internet is growing very rapidly, scalability
of the IoT platform is critically important for the realization of the potential of IoT based
services. Prime examples to the realization of this requirement in the COMPOSE architecture
can be found in the run-time which is realized as a customized PaaS infrastructure, as well as a
highly scalable communication infrastructure to connect and provide services to different
entities running within the platform, along with a scalable data management component.

A related requirement is to support heterogeneity, in such a diverse area (can be in terms of
communication protocols or API). We designed a platform to support access to heterogeneous
objects, by developing intermediate interfaces / data models / protocols that can be mapped to
individual use cases, and a related effort is the work on standardization in order to ease this
stumbling block from reducing the speed of innovation in this field.

A comprehensive description of the COMPOSE requirements can be found in deliverable
D1.1.1 entitled "COMPOSE requirements”.

Table 2: Requirements - Architecture mapping

Requirement Respective architectural element

Consumability Developers' portal

Semantic support Service Registry

Scalability Run-time; communication; data management

Heterogeneity Standardisation; layering; semantic support

Data processing / management Data repository; streams processing

Security Security components

Monitoring Run-time; communication support

Reliability Run-time; communication support

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)������*�	� �

2 Architecture High level View

At the heart of the COMPOSE vision lies the existence of plentiful smart objects, which are
real-world internet connected physical objects which can provide information on their
environment or act to change that environment. COMPOSE envisions services and applications
to be anchored at these objects which feed the platform, as can be seen in Figure 2, which
represents a bottom up view from the real physical world feeding the platform from the outside,
all the way through internal processing and support components which make it accessible to the
developer and appealing to the end user. Items coloured in yellow in the figure represent
internal COMPOSE platform components, while other components represent external entities
interacting with the platform from below (physical objects from the real world) and from above
(e.g., developers creating COMPOSE based Services).

�

Figure 2: Architectural high level components

The Smart Objects are highly heterogeneous in their computing power, protocols and
communication mechanisms. To abstract all that heterogeneity away we created the concept of a
Service Object, which is an internal digital representation of the Smart Object (marked as
Digital Resources in Figure 2). The Service Object has a standard way in which it
communicates with the Smart Objects on the one hand, as well as a standard way in which
internal COMPOSE components can interact with it. These objects can readily take part in the
creation of COMPOSE services and applications. In addition Service Objects are responsible for
the data management part of the system by handling streams of data coming from a potentially
very large number of Smart Objects.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)���+��*�	� �

Service Objects can be used as building blocks to create COMPOSE Services. These are created
by locating the Service Object(s) of interest and adding specific business logic to it. A Service
Object can be used as a basis for creating multiple Services, each geared towards a different
goal. Similarly a COMPOSE Service can make use of multiple Service Objects to fulfil its
needs. Such services can be exposed directly to external platform users (developers or end-
users), or can be used to create more complex composite services and applications.

An internal registry holds entities metadata for the different entities hosted by the platform, such
as Service Objects and Services. Internally it is represented as a multi-level registry, with raw
metadata mostly about Service Objects in the lowest level, and an RDF overlay on top of that
which describes available services while keeping pointers to the Service Object endpoints at the
lower layer.

The platform as a whole provides over-arching functionalities that can be used from the outside.
Such functionalities include discovery, which enables external entities to locate COMPOSE
internal entities to be used as is or combined into higher level entities. In addition, the platform
provides an assisted composition services engine to help external developers combine the base
Service Objects and Services into Composite Services and Applications. The platform
management enables users to deploy selected services as well as be informed as to the fate and
state of their services.

COMPOSE main stakeholders are comprised of developers but also end-users are taken into
consideration. Developers on the one hand are regarded as smart object providers that can
register and manage their devices via the platform, and on the other hand are regarded as
producers of new services and applications. Both aspects will be supported by the platform.
Note that we do distinguish between "real" developers who create new services and applications
and "light" developers that may be non-technical individuals that buy a Smart Object and wish
to plug the object into the platform in a semi-automated manner. End-users will be able to
search for the services or applications fulfilling their needs, and download or connect to the
chosen application.

2.1 COMPOSE entities

2.1.1 Web Objects

The IoT is composed of objects, either connected to the Internet or not. All of them will hold a
virtual identity in COMPOSE, but they will use different ways to communicate with the
COMPOSE platform. The group of objects not directly connected to the Internet (e.g. a bottle of
wine with a RFID or NFC tag) will need a proxy to represent them in the IoT. There is also a
group of objects which may have network capabilities, but limited programmability and support
for advanced network protocols. These devices, such as simple sensors, still will need the use of
proxies to be able to communicate with the COMPOSE platform. Finally, there is a group of
advanced devices (so-called Smart Objects, such as a Smart Phone, tablet, or an Arduino
device) that already hold the capabilities to talk to the COMPOSE platform directly.

Each one of the abovementioned objects (enabled with a communications proxy when needed)
are known as a Web Object in COMPOSE. Web Objects are physical objects sitting on the edge
of the COMPOSE platform and capable of keeping HTTP-based bi-directional communications,
such that the object will be able to both send data to the platform and receive activation requests
and notifications. They will not all support the same operations, but a minimum subset will have
to be guaranteed to make them usable in the COMPOSE platform.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)���5��*�	� �

2.1.2 Service Object

Service Objects (digital resources in Figure 2) are standard internal COMPOSE representations
of Web Objects. COMPOSE specifies an API by which it expects to communicate with the Web
Objects, in order to obtain data from them, or set data within them (for more detailed
information see D2.1.1 – " Design of the object virtualization specification"). That API can be
embedded directly in the Objects or can be provided by a mediating proxy that will connect the
Objects to their corresponding COMPOSE Service Objects. This entity serves mainly for data
management purposes and has a well defined and closed API.

A Service Object exhibits a standard API also internally towards the rest of the components
within the COMPOSE platform. That API is needed in order to streamline and standardise
internal access to Service Objects, which can in turn represent a variety of very different Web
Objects providing very different capabilities.

Furthermore, in order for the Service Object to be a usable component within the platform, upon
creation it is enhanced by semantic metadata and is stored in a registry. The enriched description
can be used later by COMPOSE discovery mechanisms to supply external users with reference
to the Service Object based on its characteristics, and functional as well as non-functional
aspects.

Service Objects can be combined with other Service Objects to create a Composite Service
Object or can be combined into Services, possibly with added developer logic centred on data
manipulations and transformations. Throughout this document we will use the terms Service
Objects to refer to Service Objects that do not fall into the category of Composite Service
Objects.

Figure 3: Service Object Stack

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)���	��*�	� �

2.1.3 Services

COMPOSE Services are built by external developers using the COMPOSE platform IDE and
SDK. A typical creation process will involve the developer invoking the platform provided
discovery services to locate the Service Object(s) of need. Once the desired objects are located,
they are inserted into the service being created while adding service specific user defined
business logic to it, using the supplied IDE. The produced service can in turn be provided back
to the COMPOSE platform to be deployed and run within it.

COMPOSE Services manifest the importance of the network and community effect. The more
such services exist and are used, the more they are prone to be re-used and thus made
successful. That is the basic rationale behind targeting this platform mainly for developers and
investing in an attempt to foster a developers' community around the created platform. Such a
community may include individual software vendors as well as SMEs and individual
entrepreneurs.

2.1.4 Compositions

Both entities described above, namely Service Objects and Services may serve as building
blocks for creating new COMPOSE entities, the composed services family. Such compositions
come in two flavours, a composed Service Object and a composed Service.

A composite Service Object is a data service and aggregation mechanism, which relies on the
data processing and management back-end component to provide complex computations
resulting from subscriptions to different Service Objects as data sources. This construct can
support pseudo-real time data stream transformations, combined with queries concerning
historical data. Data analytics primitives may be provided as well. The end result of such a
composite Service Object is inserted into the COMPOSE registry along with its description and
may be used by higher level constructs as yet another kind of Service Object building block.
Just like a Service Object, this entity serves mainly for data management purposes and has a
well defined and closed API.

A composite service, on the other hand, contains business logic, provided by a developer, and
may combine data stemming from Service Objects, with capabilities provided by various
COMPOSE services. The end result, once again, will be inserted into the COMPOSE registry
and will be available as yet another kind of COMPOSE service.

2.1.5 Applications

Applications are higher-level constructs that are built around COMPOSE entities such as
Service Objects, services, and compositions thereof. Applications in general reside, are made
accessible, and hosted outside the COMPOSE platform. Nevertheless, it may be possible for the
application metadata to be stored in the COMPOSE platform registry, which holds descriptions
of COMPOSE components to enable discovery. Moreover, it may be possible for such
applications to be hosted by the COMPOSE platform run-time. These applications will
communicate with services running within the platform, and can for example, provide enhanced
GUIs to internal COMPOSE services.

Developers can use the COMPOSE SDK and API for building their own applications for
various platforms, including mobile platforms. Applications will be developed to add logic and
enhance capabilities provided by COMPOSE services, as well as for presenting data feeds
which are produced by COMPOSE resources.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)������*�	� �

Applications are intended for external users mainly to provide User Interfaces and enhanced
interactions with external users. The applications represent the end of the line as far as
COMPOSE is concerned, thus one cannot build on top of it, as they are not made to be
composable but rather to be consumed. It can be viewed as if COMPOSE Services are the
sources of data and information and the applications are the sink which obtains the data and may
present or make use of it in any other manner it sees fit.

2.2 Platform Internal Components

2.2.1 Run-time environment

The COMPOSE platform run-time will host all entities needed for the complete operation of the
platform, such as Service Objects and Services, which will be executed within the supplied run-
time environment. The yellow coloured portions within Figure 2 represent the run-time's sphere
of responsibility. In addition it shall host all the platform supplied middleware services such as
the discovery, recommendation, communication, and monitoring engines. Hosting these entities
is comprised also of enabling the creation, absorption, and storage of data and metadata created
and associated with various kinds of entities.

The COMPOSE platform run-time will consist of a specially customized PaaS geared towards
operating above the IoT. Thus, the daily operations will be supported by a cloud environment
automating many of the tasks of running such a platform in a scalable and secure manner. This
IoT PaaS will coordinate and provide interfaces and hooks to additional system components,
such as the developers' portal, to complete the cycle of aiding the users with fulfilling their
tasks.

2.2.2 Service deployment and interaction with Servi ce Objects

Once a service has been created using the SDK and capabilities exposed by the platform such as
discovery, it is ready to be deployed into the platform. The SDK will provide an easy to use
mechanism for deploying the created service onto the COMPOSE platform. That should be a
one push button that will carry all the information needed in order to deploy, instantiate, run,
and manage the created service. The package will consist not only of the executable itself but
also a configuration mechanism that will enable controlling some aspects of the services and
provide information as to which COMPOSE provided platform services should be made
available to the newly created Service.

Once the service is introduced to the platform, an analysis of requirements for platform
middleware services will be carried out and the appropriate middleware services will either be
instantiated or existing ones will be bound to the new service being deployed. At that stage the
service itself will be instantiated on one of the platform VMs, will be bound to its middleware
services, and the platform management will be made aware of the new service being run at a
specific location. Thus the COMPOSE platform will make the service accessible to the external
world, namely to the potential end-users of the service or the developers.

If the service needs to access data or operations provided by Service Objects it will do so via the
Service Objects web server, using the Service Objects API, rather than get direct access to that
information. The internal data repository is handled and accessed exclusively by the data
management component which provides the needed data to other components, based on security
properties, without exposing the entire data management infrastructure to the possible

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)������*�	� �

manipulation by externally written and provided components. In addition uniformity and
interoperability are assured as all internal data will be accessed in a unified manner.

Composite services will be handled by a workflow-like engine that will control the correct order
of execution of different components of the composite service. Lifecycle management and
monitoring services will be provided as well, such that the management module will be made
aware of the current state of the running service, and all platform components. Monitoring
capabilities will be provided as a part of the communication back-end and will be fed into the
management module. Lifecycle management will be initiated by the deployment component and
will be followed and enforced by the COMPOSE service controller component.

2.2.3 Developer Portal

The COMPOSE developer portal contains basic components such as a Software Development
Kit (SDK), an Integrated Development Environment (IDE), a Graphical User Interface (GUI)
and a meta marketplace. All the components will provide libraries connecting to the COMPOSE
run-time, with the aim to expose and enable Services and Service Objects for providers and
developers.

����

The developer will have three ways to access the developer portal after successfully
authenticating himself as an authorized developer. The core of the developer portal is a RESTful
Application Programming Interface (API) that provides most of the functionality of the portal.
The developer may access this API directly by any programming mechanism that is capable of
issuing HTTP requests. In addition to that, the user may also access the API through a SDK,
which is basically a language-native wrapper to the API, implemented in a multitude of popular
programming languages. The third way of accessing the API is through a GUI that sits on top of
it.

����

This GUI provides a documentation section, as well as a graphical management interface for
Service Objects, where providers, as a special case of developers, can perform create, delete,
update and delete (CRUD) operations on their Service Objects and manage complex ACL
mechanisms. This includes also mechanisms for registration and management of Service
Objects with an assisted GUI based on workflow processes.

����

A major part of the developers section is the IDE, which allows for wizard-like drag and drop
composition of new composite Services and Composite Service Objects and gives the developer
access to smart service discovery mechanisms. Especially the discovery mechanism is supported
by recommendation services of the COMPOSE platform. New Services composed with this IDE
can be enriched with meta information and be directly redeployed to the COMPOSE platform.

	
�����
��

Developers can utilize Service Objects, Services, and compositions thereof to create new
applications. It does not matter whether the application addresses a certain platform or device.
After extending the applications with COMPOSE services these applications can be registered
in the marketplace. COMPOSE marketplace is not bound to a target platform such as Android,
iOS or Web. Furthermore the marketplace keeps together all COMPOSE-enabled applications
for the end-user.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)���/��*�	� �

2.2.4 Registry

The COMPOSE registry will hold a descriptive and detailed metadata of COMPOSE Service
Objects, Services as well as other publicly available services and APIs that have been integrated
with the platform such that they can be found easily be developers and end-users. Entities which
get registered with the platform will have their semantically enhanced metadata stored within
the registry. Semantic description of entities is viewed as an important aspect providing the
basis for adequately discovering, recommending and composing the many services available to
the platform. Service Objects along with their data are held within the Service Objects
repository. The description of these entities are stored and processed by the COMPOSE registry
(as can be seen in Figure 4). The registry is composed at its base from an RDF store, providing
the backbone for higher level discovery capabilities that can process information stored by the
RDF data store, pose semantic graph queries to it, and post process the results in a meaningful
way for the developer or end-user. Thus, in COMPOSE terminology there is a registry which is
the entity that holds metadata and enables sophisticated queries on that metadata, and on the
other hand there is a data repository which is targeted to store and process actual data.

Figure 4: COMPOSE registry

The COMPOSE registry, depicted in figure 4 as the semantic map, holds metadata and
description of all entities, as well as pointers to the Service Objects registry and potentially other
external resources. The access to the registry is governed by the security and privacy policies
defined for the platform and for individual entities residing therein.

The most prominent capability that is based on the registry is the discovery service. The
discovery service enables the easy and efficient location of internal COMPOSE entities by an
external user, by filtering services in terms of the functionality they provide or their data

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��
7��*�	� �

processing characteristics for example. Built on top of the discovery service is a composition
service, which uses the underlying discovery service to locate potential base services that can be
composed in order to obtain the functionality sought by the external user. In addition a
recommendation service will be constructed utilizing the discovery service.

2.2.5 Security Enforcement

The security architecture of COMPOSE is based on security metadata stored together with the
entities they refer to. Metadata captures security policies of users specifying the privacy level
the system must maintain for them. Service-centric metadata also allows developers and
providers to specify the use of the services or service objects. Finally, it helps to efficiently
build secure services and service compositions, store provenance information for data generated
and processed in COMPOSE, and to store reputation information about users, service objects,
and services.

Enforcement points in data, service management, and in the communication fabric enforce
access to data, services, or other resources based on decisions of the policy decision point
(PDP).

The latter determines the overall security state of the system, its users, and services by querying,
collecting, and evaluating relevant meta-information of the system and by retrieving relevant
information from the metadata stores. Various components in the PDP also allow considering
trust and reputation, provenance information, or user information (such as privilege
assignments) while determining policy decisions.

The PDP also supports runtime monitors to detect and prevent illegal flows – as specified by the
user or service object provider – during the execution of user-provided services. Finally, the
PDP guides the security analysis and instrumentation components in COMPOSE whose task is
the identification of potentially malicious flows in services or service composition and their
prevention or mitigation by software reconfiguration or instrumentation.

All security components rely on an identity management system. It associates COMPOSE
entities with identifiers and stores and distributes appropriate security information to also
provide an authentication service.

2.3 Putting it all together – the short version

The developers' portal is the main component which external developers encounter. On the one
hand this portal enables the developer to create new services. That task is aided by a service
discovery component which in turn relies on a services registry. The developer can make use as
well of a service recommendation capability and an assisted service composition capability
which both in turn rely on the services discovery component. Once a new service has been
designed and created by the developer he can deploy the newly created service to the platform
run-time. The process of deployment will trigger static security checks, which be enhanced by
dynamic security aspects at run-time. In addition the deployment phase will insert the newly
created service to the services registry so that it shall be discoverable in the future. Once the
run-time deploys the service it shall host, manage the lifecycle and monitor the running service,
while providing access to it to external end-users. An additional function facilitated by the
developers' portal is that of web objects registration. Once that is done the COMPOSE data
management component comes into play which serves as the point of entry for all related data,
providing advanced processing capabilities, and providing interfaces to access that data. That

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��
���*�	� �

data in turn serves as a basis for the useful operation of the COMPOSE entities, namely the
Service Objects, Services, compositions thereof, and applications.

2.4 Relationship with IoT-A

The Internet of Things Architecture (IoT-A) is a European integrated project tackling the
definition of a reference Architecture model for the Internet of Things. The project started in
October 2010 and will end in November 2013.

The main motivation behind the IoT-A project is the lack of a common understanding of what
the Internet of Things is, especially from an architectural perspective. Despite the great progress
in the availability of devices and systems in this field, not so much progress has been made in
the definition of common reference models with respect to interfaces, communication protocols,
etc. The result is an extremely fragmented area, with a strong limitation on the impact of IoT in
the every-day life services.

In order to deal with that fragmentation, the approach of the IoT-A is to propose a Reference
Architecture (RA) 1, which should represent the basis for designing any concrete Architecture,
e.g., specific implementations to be used in application scenarios. This is combined with a
Reference Model, which is responsible for defining a common understanding of the IoT
domain. The combination of the two is called Architectural Reference Model (ARM), and
represents the main objective and ambition of the IoT-A project.

In the following we present how the IoT-A Architectural Reference Model has been considered
in the design of COMPOSE. We refer the reader to Appendix 1 for a broader overview of both
IoT-A Architecture and mapping to the COMPOSE system design.

IoT-A Reference Architecture Model in COMPOSE

The IoT-A Architecture Reference Model has been used as a reference and inspiration for the
design of the COMPOSE system and architecture, both in terms of functional components, as
well as best practices. We report below a high level mapping of the COMPOSE architecture to
the IoT-A ARM, according to the various views provided.

Reference Model: Similarly to IoT-A, the reference scenario is that of a user interacting with a
Web Object (Physical Entity) mediated trough an application (e.g., web-based, mobile, etc.).
Physical Entities are accessed via their digital counterparts Service Objects (Virtual Entities). In
accordance to the IoT-A ARM, COMPOSE clearly distinguishes its design between (i) the
Domain Model, which characterizes the main domain elements of the architecture (e.g., Web
Objects, Service Objects, Services and Applications), (ii) the Information Model, which
specifies the data models, including semantic description, of each constituting element and (iii)
the Functional Model, which groups various functionalities required by the platform including,
e.g., service discovery, assisted service composition, security, etc.

Table 3: IoT-A COMPOSE comparison

������ ��	����� �����������

�& ������������ � 4��������� � �& �����������������&�������3���' �

���
� ��������	
������������	��������������������������� �����������������������	����� !��
"#�"��

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��

��*�	� �

2���!����������� � ��������������� #�)�������!����������*��& �������� �����

,!)(����'��������� � ��������� ��(����������*��& ����������� ���'�'�)�����
��!��������������'�������!)(������������$�

�

Similarly to IoT-A, three basic types of Web Objects are considered in COMPOSE, Sensors,
Tags and Actuators, where each one of them can vary in terms of sensing, computation and
communication capabilities.

In particular, the COMPOSE Domain model details the various entities involved in a generic
IoT-based application delivered over the COMPOSE Marketplace. This architectural layering
defines all the main components of the COMPOSE platform, and their interactions, independent
of any specific implementation or technology.

The Information model in COMPOSE defines how Web Objects are represented and modelled
in COMPOSE. This includes the data structures that will be managed by COMPOSE, and the
information flows among components. Furthermore, it defines the semantic annotation required
for facilitating the service discovery and recommendation.

The Functional Model in COMPOSE details the functionalities, and their grouping, that will be
provided by the platform in order to ensure a proper functioning of the system, as well as the
related services.

IoT-A Reference Architecture: COMPOSE high-level architecture is fully aligned with the
IoT-A reference architecture. In the following table we report the mapping of COMPOSE
architectural components into the IoT-A RA functional components.

Table 4: Mapping IoT-A functional architecture to COMPOSE architecture

������ ��	�����

��((!��������� �����������((!�����������*�����!��!��9�
(����)��)�?)��!������'@�(�(����&��@��
�@�
���$A@���!���)���'��''������)@�)���3� �
(���)�(���$�

2���!�������� � �����������)���� @���������(��������)@����������
�:��!�������

%�.��������� ����������������� '����������(���)�(����
(�'!����

���������)���B������ ������������((��'�����@���������'������� @�
��������' ��(�����(���������@���������
��&����������

%�.�>!�������������������)�(���� 6��������� ���'�(�� ������)�

���!��� � ,!�&���������@�;� ��:�&��)��(���)�(���@ �
,!�&����������@�����������@�.�!���C�

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��
���*�	� �

���!�������

����)�(���� ��������#���� (���@�D���(���)�(���@���!�� �
������)@����$�

When integrating the functional view of the IoT-A architecture with the most relevant non-
functional requirements, concerning the Evolution and Interoperability perspectives, also in this
case we see that COMPOSE architecture and design requirements are fully aligned.

For a more detailed analysis please refer to section 8: Appendix 1 – IoT-A.

3 COMPOSE from Stakeholders perspective

The main or characteristic flows are presented to cover the different roles that exist around the
COMPOSE platform. On the one hand there's a platform provider which is in charge of
deploying and hosting the COMPOSE platform (Sub-Section 3.1) and its daily operations, such
as fostering the automatic deployment and management of services introduced into the system,
as can be seen in Sub-Section 2.2.2.

A separate role is that of a Web Object provider, which can be a user owning the object or the
company producing the object, which they want to be exposed to the COMPOSE platform to be
used, operated on, or exposed by COMPOSE services or merely expose their data via the
platform. The flow of introducing an object to the platform and the manner in which it shall be
handled internally is further presented in Sub-Section 3.2.

Developers acting as service or application providers interact with the system via the
developers' portal as detailed in Sub-Section 3.3. Finally, end-users locate and make use of
COMPOSE provided Services and applications, as is further detailed in sub-section 3.4.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��
+��*�	� �

Figure 5: Main component flows

3.1 Platform Provider: Out of the box deployment

The COMPOSE platform consists of a specifically tailored customization of a cloud
environment, namely Cloud Foundry [2], for the IoT world COMPOSE relies on. Along with
the platform, several COMPOSE related middleware services are deployed and made accessible
to the platform users, while some such services are to be used only internally by platform
components. Externally accessible functionalities for registered and authenticated / authorized
users will include services discovery and deployment, while internally used functionalities will
include data processing services such as a NoSQL DB (CouchBase [3]), a streams processing
engine, STORM [4] and a Web tier to implement the Service Objects API. A SPARQL [6] end-
point and an RDF graph store will be deployed internally to be used by the external facing
discovery module. In addition scalable communication services will be made available to
internal components, and some such services, such as notification, may be available for external
components as well.

COMPOSE developer tools in the form of an SDK and IDE will be made available through the
platform. Internally these tools will communicate with platform exposed API for their proper
operation. These tools will enable the registration of Web Objects as well as the discovery of
existing services, creation of new services, composed services and applications. The platform
run-time will support services with logic developed by external developers.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��
5��*�	� �

Figure 6: COMPOSE platform run-time support

The platform out of the box is an IoT tailored PaaS, thus it exhibits a cloud environment to
which developers can deploy the newly created services. Internal management of resources
needed to run the platform and the user developed entities is performed transparently to the
users / developers by the platform internal capabilities.

The platform will come with readily available services and VMs ready to host the platform
internal services and a separate set of VMs ready to be launched in order to host external
developer services. All these services will be made transparently available to external entities
regardless of the physical or virtual location they reside. Moreover user developed services will
be able to transparently bind to middleware services provided by COMPOSE for their own use,
such as a DB, NoSQL engine, etc.

3.2 Web Objects Provider: registration and Service Object
management

Figure 7 summarizes the main components involved in the Service Object flow. Web Objects
(HTTP-enabled objects at least in the initial phase as a reference web-based implementation,
either through a proxy or using COMPOSE libraries natively) may be manually registered with
the platform through the developers' portal or can self-register using the Service Object API. At
registration time, object metadata needs to be provided, which can be done either manually or
automatically when possible. Enhanced metadata needs to be taken care of by the Object
Provider or integrator only once and then a unique identifier needs to be assigned to this object

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��
	��*�	� �

for future uses. External facing components of COMPOSE will provide assistance for bringing
the information online as well as with communicating internally with the objects registry via its
declared API.

Figure 7: Service Objects flow

Once the Web Object has been registered and its corresponding Service Object description has
been created and successfully inserted into the registry, the object is ready to be found and
becomes operational. The Service Object implementation will be available via a REST API that
is handled by a generic web server handling all such Service Objects. Specific responses for
specific objects will be provided by the web server based on the specific registry entry. The
Service Object is the only one that can access directly the data and metadata stored on behalf of
the corresponding Web Object. Other services wishing to get hold of this data will access it via
the Service Object mechanism described above.

3.3 Developer: Services and Applications Creation

The service creation process aims at making it easy for developers to create COMPOSE services
and applications based on COMPOSE Services and Service Objects. To that end the external
developer will be provided with an IDE, SDK, and a web based GUI to help him during the
process. Obviously the IDE supports also a GUI for creating composite services via a drag and
drop editor. But in this context the web-based GUI provides features for registration, search and
discovery of Service Objects and services. The developer can create his new value added
service using existing Service Objects, services, and content providing channels, such as Open
Data. In the process he can create new composite services.

Thus, the first task that a typical developer will execute will consist of searching for available
adequate building blocks. Thus, the GUI will provide the developer with easy to use service

Data Repository

Service Objects API

Q
ueue

Web Objects
and Services

Management API

Object
Providers and

Developers

Data API
S

tream

P
rocessing

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��
���*�	� �

discovery mechanisms. The user will be able to sift through existing services based on his
specific criteria.

Once the base building blocks are identified, the user can drag them to his COMPOSE enabled
IDE where he can add appropriate logic. Moreover, the service editor will enable and assist in
the creation of composite services based on the services located at the previous step. While in
the process, the user will be aided by a recommendation system that will assist with the best
options for services to use and to compose into novel composite services.

Once a service is successfully created it is registered in the corresponding registry, along with
metadata that includes its description, and may be pushed to the COMPOSE platform for
deployment and execution.

The composite counter-parts of COMPOSE Services and Service Objects will be assisted by the
developer portal as well. The provided IDE and GUI, with the help of the SDK will enable the
developer to formulate the rules for the creation of a composite Service Object in an easy
manner. The Service Objects of interest will be presented to the user in a graphical manner and
he will be able to connect the different Service Objects using pre-defined data manipulation
primitives. Once the new topology of the corresponding Service Object is finalized by the
developer it can be ingested into the system by the click of a button.

Similarly, the creation of composite Services will be made easy by the assisted composition
engine component, exposed to the developer via the developers' portal. The developer will be
able to identify the services and Service Objects of interest, and be able to connect them in a
graphical manner. In addition, specific business logic constructs may be inserted by the
developer as needed via the supplied IDE.

Finally a created and registered service can be exposed via a RESTful API with the idea to
enable this service for application developers. Developers can search for services and can use
the provided API for their own application. Thus, on the one hand developers have access to the
COMPOSE SDK as a wrapper for basic COMPOSE features such as discovery,
recommendations, registration, communication and management of service objects. On the
other hand the SDK will be extended via composite services and their APIs. Once an application
is extend via a COMPOSE service, the developer can register them at the COMPOSE meta
marketplace. The meta marketplace aggregates all COMPOSE-enabled applications
independent of platform and device.

3.4 End-user: Interaction with the platform

The end-user portal presents the central interface for interactions for users who have no deep
technical understanding of software, hardware and IoT relationships. It is the public facade for
usable COMPOSE applications and services with a simple user interface in the form of a Web
application. Rather the end-user portal is a meta marketplace which brings together COMPOSE
applications and services from other specialized Web portals and popular marketplaces such as
Google Play Store and Apple iTunes App Store. Thus, the meta marketplace is the central
contact point for IoT-related applications using the COMPOSE platform. It provides common
features application discovery, description and downloads.

COMPOSE helps end-user to locate their entity of need. COMPOSE application and services
are searchable and categorized in the end-user portal. Categories are established based on
common IoT topics. Furthermore the end-user portal supports a powerful search function with
auto-completion and suggestions. Applications and services have descriptions, images and
properties such as version, release date, author, etc.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��
���*�	� �

COMPOSE applications can be downloaded for use by the end-user. As the end-user portal is a
meta marketplace COMPOSE applications and services are linked to other Web portals and
marketplaces. That means that if an end-user finds a COMPOSE application in the end-user
portal and he clicks on the download button he will forwarded to the corresponding
marketplace. But COMPOSE applications can also be hosted on the COMPOSE platform and
initiated by the COMPOSE runtime. So applications and services providers are free in the
decision where to host their applications and services.

COMPOSE applications and services which are hosted on the COMPOSE platform will be
initiated by the COMPOSE runtime. COMPOSE applications and services are built with Web
technologies and provide basic user interface and user interaction capabilities. By clicking the
download button in the end-user portal the COMPOSE application will be run and connect to
the required COMPOSE services executed within the COMPOSE platform runtime.

4 Detailed design

In this section we dive into the components already presented above in a somewhat higher level
and dissect them as to their internal operation mode and interactions with their counter-
components.

As the platform is intended for providing services which are based upon objects in the real
world, naturally the starting point lies within these objects, which are not a part of the platform,
but rather the interaction with them forms the lowest layer of the platform. Thus, there is an
ingestion layer, at the entrance to the platform, which creates the bi-directional connection
between the objects in the real-world and the COMPOSE platform.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��
/��*�	� �

�

Figure 8: Architecture in a single glance

4.1 Functional Abstractions of COMPOSE entities

4.1.1 Service Object

Service Objects represent the meeting point between the physical and the virtual worlds. On the
one hand a Service Object serves as the ingestion point of the IoT (in the form of Web Objects)
into the platform, and on the other hand it provides a façade to the real world for all platform
internal components.

The Service Objects connect to the Web Objects and streamline the interaction with the physical
objects. Once a specific Web Object is ingested into the system it is elicited into a Service
Object by providing an enhanced semantic service description, which will reside in the platform
registry and will enable locating the Web Object based on its advertised characteristics.
Moreover the Service Object serves as the channel via which data flows into the platform from
the Web Object, and stored in the platform data repository. In addition the Service Object serves
as the data-serving entity for other services running within the platform.

Service Objects are served internally through a RESTful API that is served by an internal web
server. These capabilities will be exposed externally via the COMPOSE developer API.
Internally, upon the reception of a request, the Service Object ID is used to index the objects
metadata store, where the respective information can be retrieved. The COMPOSE developer
API will include a registration part and a data related portion which will be exposed and used by

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)���7��*�	� �

services. The developer API will serve as an easy-to-consume wrapper around the RESTful API
used internally.

The COMPOSE platform will provide a Service Objects API to be used for all activities related
to the interaction of Service Objects (and their counter-parts, the Web Objects). The API will be
based on REST technologies: namely, HTTP as the transport protocol, and JSON data structures
as the data model. The Service Objects API will unify both the Service Object interaction and
the Lifecycle management, providing the control knobs necessary to allow the creation and
management of Service Objects. Based on the specific API invoked the following HTTP
operations can be accepted: PUT, POST, GET, and DELETE.

Each Service Object will be associated with a unique ID (the Service Object ID) at creation
time, and this ID will be used to identify the Service Object and to construct the HTTP URIs
necessary to interact with the Service Object. Such URI will be known as the Service Object
endpoint.

Each Web Object will have to know the ID of its counter-part Service Object to interact with the
platform. COMPOSE Services and Applications, and other external entities that need to interact
with Service Objects will have to know the Service Object ID also. Furthermore, the Service
Object ID will be searchable and discoverable.

Service Objects can be combined with other Service Objects to create a Composite Service
Object, which in fact is an abstraction representing different data aggregation mechanisms. The
same API will be used to interact with plain Service Objects and Composite Service Objects.
The platform will determine the type of Service Object based on the metadata associated to its
ID in the Service Object registry.

As Service Objects will also offer means to actuate on the Web Objects, bi-directional channels
of communication will be needed between Service Objects and Web Objects, supporting both
the traditional “pull communication model” and the more challenging “push communication
model”. The former is usually initiated by the Web Object-only, and is not useful for actuations
since they must be initiated by the platform as a response to a placed request. To address this
problem, the push model is required (being the platform who initiates the actuation operation on
the Web Object). The push model is usually challenging when the Web Object (being a proxy or
an Internet-enabled Smart Object) sits behind a firewall. To overcome the limitations posed by
Internet firewalls, the COMPOSE platform will be also reachable using the WebSockets
technology.

To summarize, the Service Objects API will offer the following services:

� Creation and destruction of Service Objects: A Service Object will be represented
internally as a data structure containing information and links to other components as
needed. The API will provide means to add a Service Object providing the details
associated to it, and to destroy a Service Object when the corresponding physical object
is no longer associated with the COMPOSE platform.

� Pushing data to the platform: Web Object sending sensor updates to the platform
through the corresponding Service Object endpoint.

� Getting data from the platform: Given a Service Object ID, the platform will provide
limited access to the data associated with the given Service Object and stored in the
COMPOSE data repository. The access will be limited in terms of “who” can access the
data, and the API will cooperate with the security and privacy module to determine the
restrictions to apply.

� Subscribing to updates: COMPOSE Services and Web-based external services (e.g.
Facebook, Twitter…) will be able to subscribe to Service Object updates. Every time a

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)������*�	� �

Service Object gets new data from the corresponding Physical object, the subscribers
will see the new data being forwarded to their location, in a user-specified format.

� Running data queries: It may be useful to some consumers of data associated to Service
Objects to perform queries on the stored data. The platform will provide means to create
such queries and make them accessible through the API.

Object actuation: The Web Objects will not only be the source of data reaching the platform,
but they will also be the endpoint of certain actuation actions. For that purpose the Service
Object API will also provide means for initiating actuation actions on the Web Objects, with
any restrictions determined by the security and privacy module.

4.1.2 Services

Services are one of the main artefacts of the COMPOSE platform. For that purpose we aim for
the entire operation around services to be as painless as possible for the developers as well as
for the end-users. Services represent the specific step forward in terms of functionality that an
end-user can enjoy based on the multitude of smart objects that are out there.

Description ��

In order to make services searchable we aim for a semantically rich description of each service.
Such a service can in turn be advertised, so that both end users and developers can (re) use
them, and/or combine them for their own needs.

The service description is divided into 4 main parts, namely, the functional description (i.e., the
operations and functionality provided), non-functional properties (e.g., security level, response
time, etc), domain specific metadata (i.e., the semantic type of data consumed and produced by
the service), and grounding information (i.e., technical information on how to invoke the
service).

In a nutshell we define Services as executable entities which have a number of Operations.
Operations in turn have input, output and default MessageContent descriptions. These capture
the entire messages that these operations exchange when they are invoked. In turn,
MessageContent may be composed of mandatory or optional MessageParts. These parts
essentially provide a more fine grained account of the message formats supported by the
service. Having a more detailed decomposition of the messages enables both software and users
to better know that parts of information conveyed by the messages and distinguish those that are
optional from those that are mandatory. On the basis of this detailed information, for instance,
automated dataflow may be derived in order to generate executable service compositions.

The concrete domain-specific semantics of each of these elements for a given service can be
expressed in terms of any ontology or shared RDF vocabulary, thus allowing the use of a
general purpose representation and the corresponding machinery across heterogeneous services
from diverse domains. The service operations description will consist of a set of operation with
their corresponding input and output parameters. The domain specific metadata will add
semantics such as functional and non-functional classification. Finally, the grounding
information is supplied in order to map services into the real-world.

Design

Service design is to be made accessible to developers via an IDE, SDK, and a GUI front-end.
The service design functions will enable the developer to easily locate interesting existing
Service Objects or services, and tailor specific logic around it. In addition, the design front-end
will enable the easy creation of composite services from existing ones, while once again adding
specific logic to the composition.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)���
��*�	� �

Service recommendation services will be made available to choose the best suitable entity based
on developer needs as well as proposed composition, and recommendation based on platform
knowledge, such as security related aspects. Service design is mainly supported by the IDE. The
IDE brings together functions for creating composite services. Service Objects and existing
services can be found with discovery and recommendation features. Identified services and
Service Objects can be arranged by drag and drop functionality with a visual editor. A workflow
engine in the background validates and controls the execution of the final composite service.
Finally, the IDE provides deployment assistance for the composition.

Deployment, execution, and lifecycle management

Once a service has been successfully created and tested by the developer it needs to be validated
and deployed onto the platform. The deployment process will take all the necessary care of the
service from the moment it has been successfully created, and bring it into a state in which it
can be pushed and deployed into the platform cloud execution environment. That process entails
gathering all necessary information concerning the code produced and the accompanying
configuration parameters and bundle them in a way that will be digestible by the cloud
deployment infrastructure, and will enable the further task of monitoring and controlling the
lifecycle of the deployed service.

Figure 9: Lifecycle of a service

The Lifecycle stages are based and inspired by the Open Services for Lifecycle Collaboration
(OSLC), which is based in turn on the W3C (World Wide Web Consortium) Linked Data. The
detailed information about Lifecycle stages can be found in the deliverable D3.2.1.1 – "Design
of the Interfaces for service execution ".

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)������*�	� �

Services Discovery

Service descriptions, along with all the associated metadata will be
stored in a scalable RDF store that will be exposed as a SPARQL
end-point. The RDF store will host all entities that have semantic
information attached to them such that they can be retrieved at a
later time via graph queries.

The underlying technology to be used is Apache Jena [1], which is a
Java framework for building Semantic Web applications, enabling
the creation, storing and processing of RDF triplets, deriving
additional knowledge by means of automated reasoning
mechanisms, and providing querying support through SPARQL.

The anticipated scale, mainly in terms of amount of queries to be
processed for particular operations, leads us to the design of a highly
scalable solution in which queries may be partitioned among
different nodes. In addition data updates may be partitioned as well.
It is envisioned that the RDF store will be replicated and thus made
highly available and contribute to the entire system's fault tolerance.
The replication layer will be flexible in the amount of supported
replicas and will operate in an active-active fashion. Queries may be
served by any of the available replicas concurrently; potentially the
same may hold true also for data updates.

On top of the data layer, the discovery engine provides a storage and
management layer that is in charge of (i) supporting advanced and
efficient access to the data layer, (ii) supporting the import of service
annotations in a variety of formalisms, and (iii) pre-processing
services and documents for the indexing of services.

Finally, the third layer is in charge of providing advanced discovery
and analysis functionality exploiting the data held by the registry.
This includes notably algorithms exploiting the semantic descriptions of services functionality
and their interfaces. Discovery results can ulteriorly be combined (e.g., for creating complex
queries) as well as filtered and ranked taking into account non-functional descriptions.

Composition (OU)

The service composition will be performed
through an engine that will have two components,
namely, a heuristic graph search engine and a
trust and security filter. Through the discovery
engine and given the user’s request, the first
component will select a set of candidate services
that could potentially be part of compositions that
would provide a required functionality. On the
basis of this filtered subset of services, the
module will construct a set of candidate
workflows whereby each one represents a
composition of services that implements the
required functionality. The search engine will
perform graph search algorithms on workflows in
order to construct rapid service compositions.

Figure 10:
Services

management
stack

Figure 11: Composition engine
architecture

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)���+��*�	� �

The trust and security filter will take the results of the first component as input. Then, the
second module will filter and rank candidate workflows according to security and trust levels of
the composed services. Security and trust assessments will be performed by the security, trust
and provenance component developed in WP5.

Recommendation

The service recommendation engine will be implemented through a system composed of two
main modules: a content-based filter and a collaborative filter. The content-based filter will find
services that are similar to an ideal one or an existing one that is specified by a user. This first
filter will exploit four external components:

� the discovery engine, for searching services that provide similar functionalities;

� the monitoring platform, for selecting services that have similar or better performance;

� the security, trust and provenance platform, to filter trustworthy services;

� a Web crawler that collects and derives whenever possible additional information, such
as popularity and geographic coverage of services, to rank services according to user
context and needs.

On the other hand, the collaborative filter will select services according to service usage
provided by the data provenance platform.

The implementation of the service recommender will be mainly focused on the development of
the content-based filtering until the final stages of the COMPOSE project which is when usage
information will also be available.

Figure 12: Service recommender architecture

4.1.3 Applications

Applications are higher level constructs with developer supplied logic and an external GUI that
take as input services running within the COMPOSE platform and generate an external
application that can be downloaded and run outside the scope of the COMPOSE platform.

The applications themselves along with their metadata may be stored in the internal COMPOSE
registry, and thus made searchable for interested end-users. Some aspects of the applications
may be run on an external device, such as a laptop or a Smartphone, and will communicate with
the internal COMPOSE services running within the COMPOSE platform via the COMPOSE
supplied web based API and endpoint. Thus, developers are free to use COMPOSE services for
their own target platform which follows the trend of a cross-platform approach.

Furthermore COMPOSE supports a meta marketplace for promoting COMPOSE applications.
These applications are listed in the marketplace with description and link to the initial
deployment. The meta marketplace acts as an aggregator since COMPOSE application may be
distributed across various distribution channels.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)���5��*�	� �

4.2 Core platform components

4.2.1 Security

This section sketches the current status of the security architecture which will be subject to
refinement until the end of the project. Further details about this status and its implementation
can be found in deliverable D5.1.1 "Security requirements and architecture for COMPOSE".

The following text mostly refers to Figure 13. It illustrates the placement of the main entities of
the security architecture. This figure is based on Figure 5 which gives a high-level introduction
to the flow between the main components.

���
���

Figure 13: Security Architecture Overview

��������	
�
�����

The identity management (IDM) component associates COMPOSE entities with a virtual
identity. In this way, it allows for authorization, authentication, and accounting. As a
consequence the IDM component also needs to provide the appropriate information to the
security components taking security critical decisions for principals, i.e. monitors and policy
enforcement points.

The IDM component distinguishes between two types of principals: internal and external.
Internal principals comprise any type of user, service object, service, and application. They are
managed using the credential based User Account and Authentication (UAA) system. It
provides a flexible user and component management and has already found its integration in
Cloud Foundry, which forms the basis for the COMPOSE cloud based run-time.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)���	��*�	� �

External entities and the communication between them, such as interactions with WebObjects,
SmartObjects, WebApps, or WebServices, require more sophisticated mechanisms. Their
security exposure is higher as they “live” outside the COMPOSE platform. Thus, establishing a
secure channel with such entities is impossible without appropriate security mechanisms in
place. For this purpose, the IDM component will also host a Certification Authority (CA) which
can issue certificates for such entities. In this way, COMPOSE can establish secure channels
with the ability to revoke specific trust relationship and avoiding the classical problems of key
distribution schemes.

Of course, Smart Objects may not be able to run cryptographically sophisticated protocols
required for a public key infrastructure. However, in application scenarios where reliable sensor
information, origin, etc. are essential, COMPOSE can rely on the use of Web Objects which can
implement and run such protocols.

�� �����	�
�
�
�

The security architecture of COMPOSE heavily depends on metadata and mainly distinguishes
between policies, provenance information, and reputation information.

Policies specify the rules according to which COMPOSE entities should be handled, e.g. which
service or user should be able to read a specific data item, or which developer or user should be
able to run a specific service which consumes data from a service object, etc. Policies are
managed by the system. However, a user can obtain sufficient permissions to create or edit
policies, as well. Security policies for data are stored with the data in the data store. Policies
about the use of services or service objects are stored in the service object and service registries
respectively.

In contrast, provenance information is solely generated by the system. It archives the
information about when, where, who, and how an entity has been used. While we will try to
keep this provenance system as generic as possible we currently only support a data provenance
system. It accumulates information about the services generating specific data, the services
consuming it, and possible operations performed on this data, e.g. its combination with other
data or its broadcasting to remote locations outside of the COMPOSE system. To also account
for scalability, we will consider descriptive mechanisms which allow the accumulation of
provenance data on the basis of data sets. Furthermore, additional metadata may describe when
provenance data should be archived. This will allow the user to control the amount and type of
data collected by COMPOSE and the system can control the resources used for this purpose.

Reputation information collects feedback about the operation and installation of service objects,
services, and applications. It is stored together with its entities in the corresponding service
object and service registries. COMPOSE currently does not archive data reputation. We assume
that reputation information is already contained in the provenance information. As soon as the
first prototypes show which type of information can be derived from provenance data, we will
determine whether the additional accumulation of reputation information for data would make
sense.

Finally, the service registry also stores security annotations about services. These are
specifications which define pre- and post-conditions for services, as well as information about
their internal, abstract data flows. While pre- and post-conditions specify system states which
must hold before execution of a service or which hold after its execution respectively, flow
specifications provide more insights about where, e.g. to which resource, input data is flowing,
and how and from where output data is generated. This information can be generated by hand
describing critical security services provided by COMPOSE, e.g. the encryption or
authentication of a data stream, it can be generated by semi-automated processes for APIs, or it
may be generated by the system to save computational resources during the analysis of services.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)������*�	� �

��!�������

One central entity in the security architecture is the policy decision point (PDP). This
component supports the enforcement of security policies by checking the current state of the
system and determining whether security critical operations are compliant with its policies.

The PDP is used by many policy enforcement points (PEP) in COMPOSE. The PEPs in the data
and service management use the PDP to decide on the authorization of access to data, services,
or applications. Further, the PDP has access to many information sources that feed single
decision modules in the PDP component. The following types of modules will be the minimum
number of modules supported by the PDP: a trust and reputation, a provenance, a flow control, a
communication, and an Access Control and Accounting module. In this way, the PDP can
answer policy decisions of the main enforcement points and monitors in COMPOSE.

The PEPs in the data and service management mainly control access to data, service objects,
and services. These management units also update the appropriate information in the registries,
e.g. provenance, reputation, or policies.

A security monitor in the communication fabric controls all communication between
COMPOSE entities. It can also update the relevant security details in the registries.

Finally, very important enforcement points are the runtime monitors which are directly
integrated in the execution environment of COMPOSE or by instrumentation in the COMPOSE
applications and services themselves. To support scalability and precision during runtime
enforcement, our monitoring will opt for inline reference monitors and central monitors.
Permanent runtime monitoring will ensure that data flows which cannot be analyzed statically
can be enforced dynamically. All other runtime monitors will be integrated using the security
analysis component which checks service or service compositions before their execution. To
increase efficiency, analysis results for services can be stored in the service registry. In this way,
services or their combinations can be pre-analyzed and multiple analyses of the same service
can be avoided.

Instrumentation of services and service compositions is supported by default security services
stored in the service registry. They implement basic security primitives and provide an
appropriate specification with feasible security annotations. The security analysis component
can use these specifications to patch compositions or services not-compliant with the existing
security policies. Such instrumentations can also be proposed to developers through the IDE.
The SDK will use the appropriate interface of the security analysis component to make the
results of the analysis accessible to the end-user.

More detailed information on a first draft of the security architecture and its impact on the
security requirements identified for COMPOSE are described deliverable D5.1.1 "Security
requirements and architecture for COMPOSE".

4.2.2 Data management

Once the Service Object is active, the REST API will take care of handling all the operations
related to the Web Objects activities, management actions, data processing requests and
subscription dispatching. As it is expected to handle large volumes of data as well as potentially
load peaks as a result of aggregated traffic flowing from a large number of Web Objects, the
REST API will be structured as a multi-tier service. The front-end tier will handle the basic
parsing of REST operations and initiate simple data store/retrieve actions (with limited
computational cost) and the back-end will be used to process complex tasks, that will be run in
real time but asynchronously using stream processing technologies (in particular, STORM).

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)������*�	� �

Both Plain and Composite Service Objects can be accessed through the API front-end, but while
sensor updates ingested by Plain Service Objects will imply little computation and just trigger
subscriptions, Composite Service Objects will usually result in more complex computations that
will take place in the back-end, usually triggered by activities initiated on the Plain or
Composite Service Objects. So, usually, Composite Service Objects will be subscribed to
different data sources (such as other Composite Service Objects or Plain Service Objects), and
their activity will be triggered by any updates originated on the Service Objects they are
subscribed to (represented in Figure 14 by the dashed line that forms a loop around the STORM
topology). Plain Service Objects can not be subscribed to any sources, and as such, their activity
can only be initiated as a response to a sensor updated pushed to the COMPOSE platform by a
Web Object.

The front-end of the API will be implemented as a generic Web Server, possibly using an event-
driven architecture in the final implementation. The event-driven architecture is especially well
suited for implementing REST APIs as they require keeping open connections with a large
number of HTTP clients, but at the same time each client is usually performing little activity on
the web tier: parsing REST operations is not a costly activity. The task assumed by the front-
end is to check privacy/access/security rules (in cooperation with the security component), and
store the raw data for plain Service Objects.

The back-end of the API will be implemented using state-of-the-art stream processing
technologies. These technologies allow for the design of highly concurrent processing
topologies that are used to process incoming chunks of data on-the-fly. In particular, STORM
has been chosen over other existing technologies (such as Apache S4) because it can guarantee
that any token entering the topology will be processed unless the whole STORM infrastructure
suffers an unrecoverable failure. The task assumed by the back-end is to check for data
subscribers (either internal, which is the case for Composite Service Objects, or external such as
public websites), transform data as needed before forwarding it and trigger all the subscriptions.
For the particular case of Composite Service Objects, that perform data aggregation operations,
the STORM runtime will instantiate the necessary components to complete the operations and
take the data through the processing pipeline.

Finally, a distributed data store will be used to keep track of all the object produced data,
obviously with user configurable data aging properties that will allow discarding undesired data.
For that purpose, CouchBase has been chosen as the data store because it provides the benefits
of NoSQL data stores (highly distributed, high-availability properties, scalable), it is document
oriented (which fits well for many different data sources and formats as it is the case of
COMPOSE use cases)

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)���/��*�	� �

Figure 14: Data Management Flow

Queries on the data associated to Service Objects will be available using a query DSL. The
mechanism to send queries to the platform will be integrated in the interface used to access
Composite Service Objects. The search infrastructure to resolve queries will be provided by an
underlying component that performs high-performance indexing and search operations. In
particular, ElasticSearch will be leveraged as it is one of the most powerful and extended search
engines that can be integrated with scalable data back-ends (in particular CouchBase), and
which is considered for the implementation of the registry and repository prototype.

4.2.3 Discovery Service

Service discovery forms the basis not only for semantically retrieving corresponding Services
and Service Objects but also for composition and recommendation services as depicted in
Figure 15. The discovery component will serve all entities that have semantic information
attached to them, more specifically Service Objects, Services, and applications.

At the basis of the service discovery component is a semantically enhanced data store in the
form of an RDF store. This component will be made highly scalable and with high performance
(with special emphasis on read / query performance) to meet the demands of the expected usage
pattern.

The actual data store will be accessed by a standard Apache Jena interface that will handle all
interactions with the discovery component. Expected queries are graph kind of queries over
RDF triples, thus SPARQL was chosen as the query interface. The SPARQL end-point will be
exposed to the higher levels of the discovery component via its RESTful API. The actual
consumers of the discovery service will use a higher layer RESTful API that will make it easier
for developers to interact with the semantically enhanced raw data within the registry in order to

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��+7��*�	� �

locate existing entities of interested based on some of its characteristics or to find suitable
candidates for composition.

Figure 15: Service Discovery stack

Naturally, the RDF store needs not only to respond to queries but also needs to be populated and
updated with new and changed information concerning COMPOSE entities. Thus, an update
interface, providing CRUD semantics will be provided as well.

The services recommendation and composition will lie behind a generic service management
interface which will be made available to the external developers' world via the platform's
developers' portal.

4.2.4 IoT PaaS: the platform Run-Time

The run-time infrastructure is supposed to provide the basic mechanisms in order to deploy,
host, and manage the COMPOSE platform internal components, as well as the service objects,
services, and applications provided by the COMPOSE developers.

The COMPOSE architecture has many parallels with current Cloud Platform as a Service
(PaaS) frameworks. In general, the requirements from a cloud PaaS are:

� Reduce the complexity of writing and deploying a web application;

� Support the hosting of applications written in popular web programming languages (e.g.
Java, Ruby, JavaScript);

� Provision platform services (e.g. DBMS, NoSQL, Messaging), and allow easy
integration of applications with them; as well as allow platform services to be extended
(i.e. add a custom data-store, messaging solution);

� Be IaaS (Infrastructure as a Service, e.g. OpenStack, EC2) neutral, that is support
hosting by multiple cloud IaaS vendors to prevent lock-in;

� Support automated multi-node setup to manage production environments.

Some examples for PaaS frameworks are Cloud Foundry, Heroku, OpenShift, and Amazon Web
Services.

In a sense, COMPOSE strives to develop an IoT-oriented PaaS, rather then a regular web
oriented PaaS. However, rather than building such an infrastructure from scratch, the additional
IoT-centred features and capabilities can be added on top of a web PaaS framework. The
platform chosen to serve as foundation for this task is the Cloud Foundry (CF) PaaS
infrastructure [2]. The reason we chose Cloud Foundry is mainly due to the fact that it is open,

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��+���*�	� �

has a favourable license (Apache 2.0), widespread adoption, and adequate technical
characteristics.

The Cloud Foundry architecture, shown in Figure 16, is conceptually simple. Every external
entity that communicates with the platform or the entities hosted in it needs to go through a
layer of routers. This router is in charge of maintaining the mapping between the web address
provided to external users and the real physical location in which the desired application resides.
A web user will be directed to a silo of web applications, whereas a web developer that
publishes or manages an application will talk to the cloud controller. Web applications may be
bound to platform services, like a database, a messaging service, etc. Thus every composite
application deployed in CF can be divided into two components: an "application" and a set of
"services" (since this terminology is overloaded and confusing, we'll call these CF-apps and CF-
services, respectively). CF-apps are typically web applications, deployed on top of a container
like Java Web (Tomcat), NodeJS server, etc. The VMs in which the apps run are stateless, and
are managed by CF itself. Thus, and app that needs to save data uses a data storage service like
a DB, NoSQL store, etc. CF-services are either hosted on statefull VMs, or physical hardware,
and can be managed by CF itself or by a third party. CF comes with a small set of built-in
services (e.g. MySQL, MongoDB), but it is rather easy to extend the set of services and add
customized services.

Figure 16: Cloud Foundry architectural overview

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��+
��*�	� �

We decompose every internal components of COMPOSE into parts which can be hosted as CF-
apps, and parts which can be hosted as CF-services. An example of a few selected internal
components is show in Figure 17. For example, the service discovery component is divided into
a SPARQL RDF store hosted as a CF-service, and a discovery engine hosted as a CF-app.

�

Figure 17: COMPOSE on Cloud Foundry

User applications are hosted as normal web CF-apps. Examples are the use-case motivated
applications – smart-territory, smart-city, and smart-spaces. By using CF we gain all the built-in
machinery that is devoted to deploying, managing, and hosting applications. We also gain the
ability of applications to use general CF-services, like DBMS (e.g. MySQL) and NoSQL
storage (e.g. MongoDB, Redis).

COMPOSE also aims to provide a set of developer tools geared specifically to the IoT realm.
This set of tools replaces the CF-vendor-specific development tools (developer tools are
proprietary in CF, at the time of writing). The developer toolset communicates with a
"COMPOSE-controller", which mimics the role of the CF "Cloud-controller" (CF-CC). It
delegates many of the actions directly to the CF-CC (for example pushing, or deploying, a web
app into the cloud); but modifies its behaviour when IoT specific actions are needed (for
example registering a smart-object does not go through the CF-CC).

��"������������

An integral part of the COMPOSE provided run-time is the service deployment component.
This service, will be integrated within the platform cloud and will interact on the one hand

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��+���*�	� �

internally with the cloud controller in order to deploy, monitor, and manage COMPOSE
services, and on the other hand will interact with the developers' portal in order to provide the
automatic service deployment capabilities in an easy to consume manner for the developer.

It is the intended purpose of this component to intercept commands flowing into the cloud
controller and provide COMPOSE specific capabilities in parallel to interacting with the cloud
controller. Thus, upon the introduction of a new COMPOSE service from the developers' portal
the COMPOSE controller will pass the new service through a validation phase, and upon
successful validation, it shall interact with the Service Registry to incorporate the corresponding
service description, and will interact with the cloud controller to perform the actual deployment
in the cloud and bindings to the needed cloud provided middleware services.

4.2.5 Scalable Communication infrastructure

The communication infrastructure is meant to provide group communication and membership
services to the entire cluster including all its internal components. That infrastructure will be
used internally by components to support their own operations, as well as be available as a
service to external users to connect and get notifications upon the occurrences of conditions of
interest. Such a functionality will be provided via a publish / subscribe mechanism to which
external users may be able to join via the use of a thin communication client. This service will
be used both for the platform administration itself, for example to have an up-to date view as to
the entities which are alive and connected to the platform at a certain moment in time. Services
running within the platform can make use of these services to communicate between themselves
using various paradigms, such a pub / sub. The same technology will serve as a backbone for
the platform monitoring capabilities.

To realize the capabilities mentioned above a scalable, fully distributed, messaging, membership
and monitoring infrastructure will be devised. This scalable and distributed infrastructure will
utilize peer-to-peer and overlay networking technologies to perform its operations at the scale
envisioned with the required performance.

Figure 18: Communication Infrastructure

The main services implemented and offered by this component shall be membership, and
scalable group communication. In the future efficient monitoring may be added, and a DHT
component may be made available to interested users. These set of services will enable (i) the
operation and orchestration of resiliency aware application, providing fault tolerance (ii)
Monitoring, load balancing, resource management, and efficient components scheduling (iii)
Support distributed resource location and discovery, and (iv) Application integration and
cooperation.

The proposed solution is a fully distributed, self organizing, overlay network that does not rely
on IP multicast. There are two types of entities envisioned, namely servers and thin clients (as

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��++��*�	� �

can be seen in Figure 18). The servers will form a group of their own in which each member is
connected only to a limited amount of its peers. The servers group has full membership
knowledge, providing an eventually consistent semantic. Several internal independent
topologies may be supported, namely ring (for robustness), random (for information
propagation), and structured (for key-based routing), together supporting efficient and robust
communication channels of the kinds mentioned above with versatile reliability modes possible.

Internal COMPOSE entities running within the COMPOSE platform, such as the Service
Objects web server or COMPOSE services, will connect to the communication infrastructure
via a thin client interacting with a local server instance using an openly available API. The thin
client will send heartbeats to the designated server such that information about members joining
or leaving the group can be established. In addition, there will be an API offered to enable these
clients to participate in the group communication and monitoring activities as full fledged
participants, able to obtain and broadcast information. This design aims to balance the desire on
the one hand to have different entities participate in the communication bus, while keeping in
mind that some of the participating entities are small and thus cannot be required to embed
within them a full fledged communication server. Thus, the thin client will enable them to
participate in the infrastructure while not forcing them to carry a server baggage upon their thin
backs. In this manner monitoring of all the different kinds of components in the platform can be
achieved and the servers' group will have a complete view of the state of the system and all its
components. In addition, it shall allow different kinds of entities to communicate and share
information, such as between a running service and an internal orchestration module.

This scheme scales up to a couple of thousands in the servers tier, whereas each server can
support numerous smaller scale devices, thus reaching the initial piloted scale. As a possible
future refinement of this scheme we shall contemplate a full fledged hierarchical structure at the
servers tier as well, in which individual groups will be federated by a management group, thus
reaching a scale of up-to a million in the servers tier itself. The hierarchical design relies on the
same notion of a group mentioned above; with many such groups operating independently and
having a representative of them connect to a management group that federates all the individual
base groups.

In such a scheme as
depicted in Figure 19, each
group maintains full
knowledge of their own
members, while specially
designated delegate node
in each base group
communicate with their
respective supervisor node
in the management zone to
keep it up-to date with the
state of the base group in
question. The supervisor
node in turn keeps a

complete view of the zones under its supervision, but shares with the rest of the management
group members only a concise representation of the base group status, for scalability reasons.
Nevertheless, the full information of any specified zone can be retrieved by invoking a
management zone specific protocol.

This kind of interaction between the base groups and the management group enables not only
keeping an updated global status information across the cluster but also enables group
membership communications between nodes across the cluster. In such a scheme, the supervisor

Figure 19: Communication hierarchical design

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��+5��*�	� �

node will serve as a representative of all the base group nodes interests. For example to enable
pub / sub across the entire cluster, whenever a base group node registers as a subscriber to a
topic, its corresponding supervisor will register as a subscriber as well and will make sure to
pass back to the base group every message that is receives on the topic in question, where the
delegate (acting as a publisher) will ensure that the message is delivered within the base zone to
all interested parties.

Membership

Membership service supported will be an eventually consistent interest aware membership
enabling the identification of members joining or leaving the system as well as providing
support for group communication services such as publish / subscribe via the distribution of the
interests of each node.

A node joining the system will obtain as a configuration parameter a list of nodes that belong to
the group. A joining node requires at least one of the nodes in that list to be alive in order to join
the group. Once a connection has been established, both nodes exchange information and based
upon that the joining node starts establishing connections to additional nodes in the group.

Every node in the group maintains open connections to only a small amount of its peers and
guards them via a configurable heartbeats mechanism. Once a node ceases to transmit heartbeats
for a configurable amount of time it is declared dead by its peer.

Information concerning nodes that have joined, left, or crashed is transmitted periodically by
each member to its connected peers, and thus the information is spread via a gossip mechanism
throughout the cluster.

Such a capability is important for the platform administration to get a view of which entities are
alive, and which others have disappeared. This information may have implications for example
on an orchestration engine, a recommendation and a composition engine.

Group communication

Efficient publish / subscribe messages dissemination can
be based on key-based routing. Once a structured
topology has been established, such as the one presented
in Chord [8] and depicted in Figure 19, efficient routing
can be performed based on the structured topology.

A broadcast mechanism is devised that splits the range in
half and transmits the message to eth first node in each
such half. Each receiving node in turn follows the same
pattern, thus achieving an efficient transmission of the
message to all nodes in the group without repetitions. A
broadcast service may be used by every entity that needs a

piece of information to quickly flow to all peer entities in
the group. This service can be used as a basis for a
platform wide monitoring service.

Similarly efficient pub / sub routing can be established
using information gathered by the interest aware membership service. When a topic has a large
audience (as a percentage of the total nodes in the group) the message shall be broadcasted to all
nodes and filtered by nodes which did not subscribe to this topic. When a message is published
on a topic with a small audience it shall be sent point-to-point to the subscribers over the
overlay. There are several additional optimizations to the algorithm, such as broadcasting in a
specific range with a dense subscribers' population vs. sending a message point-to-point in

Figure 20: Structured
topology

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��+	��*�	� �

sparsely populated regions. The first implementation introduced within COMPOSE will use a
best effort and an ack-based reliability modes. Best-effort refers to no strict reliability as
messages that may be lost along the way between the publisher and a subscriber will not reach
the subscriber. On the other hand, in ack-based reliability mode a subscriber explicitly sends an
acknowledgment message upon the reception of a data message. If such a message isn't received
by the publisher after a pre-defined amount of time the message will be re-sent to that
subscriber. Such a service can be used to coordinate between different entities interested in the
same information distribution, without knowing all entities apriori or have direct connections
between them.

Support can be provided as well for a Write / Subscribe semantics (a bulleting board) if needed.
Such a semantic ensures that the last item published on a certain topic is received by interested
subscribers. Such a service may serve as a building block for a workflow / orchestration engine,
in which a process that finished its duties informs the world about this via a specific bulletin
board topic while posting the corresponding results. A process that needs to kick-start its
operation grabs the information from the bulleting board and can start its respective flow.

Monitoring

Monitoring functions can be supported by attribute replication based information spreading.
Such a service is designed for slowly changing data that is not very large. The attribute
replication service enables a node to set attributes upon itself and have the information
replicated throughout the system using the internal gossip mechanism. Each node holds the
complete attributes map of all other nodes in the cluster as a read-only map and can only write
to its own map.

If more efficient scheme is needed we shall contemplate the introduction of a Convergecast [7]
infrastructure that will enable the easy collection of highly distributed data via a dynamic
reverse broadcast tree, with possible aggregation function at the intermediate nodes. Such a
service can efficiently aggregate a response from many to one, on a topic scope. The process
consists of a forward flowing broadcast in which a dynamic aggregation function can be seeded
in the intermediate nodes, to be used in the backwards flow that performs a reverse broadcast
along the original path, performing the aggregation function before continuing the flow in the
backwards direction. Our design will call for the possibility to form a dynamic topology,
building an on demand tree that can start from each node in the cluster rather than a fixed tree
that needs to be maintained in the face of membership changes. We may contemplate also
making the possible scope of such operations dynamic based on a topic subscription rather than
forcing it to be a broadcast over the entire group. Thus we may end up with multiple aggregators
and multiple operations front-ends at multiple locations simultaneously.

4.3 Developer facing

4.3.1 SDK

In the context of the developer portal the SDK is not a complete chain of tools, as described by
other examples with this term, but actually a wrapper for an API, natively implemented in a
variety of programming languages. This can either be achieved by providing classes in language
code and libraries or by extending the language, with e. g. with Ruby Gems, Node.js packages
or PHP extensions. The code for these SDKs should be open and for several reasons publicly
developed on a modern social coding platform, like github. These reasons are for one, that many
developers are already active on these platforms, creating yet another incentive to participate in
the COMPOSE platform, and on the other hand, the SDKs can be developed much faster with

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��+���*�	� �

the community contribution. In the first step the SDK will support Web technologies with
HTLM, JavaScript and CSS supporting a wide range of Web applications and hybrid application
development approaches.

����

The API will exploit the simplicity and power of the well-known REST implementation, the
HTTP protocol. This makes sure, that not only a majority of developers are familiar with the
protocol, but also that almost all programming languages and a wide variety of tested tools is
already able to operate on it. To achieve a RESTful API, the management operations of
creating, reading updating and deleting, usually referred to as CRUD operations, will be mapped
to the respective HTTP methods.

The payload of the HTTP requests and responses will consist of either JSON or of XML data.
While both formats can be easily transformed into the other, with a certain degree of
information loss, either format has its own advantages. The JSON format is much more
lightweight, whereas the XML format can provide additional meta information of the data, such
as data types, which can ease the processing in statically typed programming languages. Most of
the major programming languages today provide libraries for either of these formats.

Also, using the HTTP protocol, an encryption layer is already available through SSL/HTTPS.
Exposing the API directly has the advantage, that third-party tools can be created, like device-
or platform-specific middleware that access the API, allowing e. g. easy registration of a
device's sensors and actuators as Smart Objects.

To ensure all necessary functionality, the SDK API exposes operations that translate directly to
the underlying COMPOSE Controller interfaces, where possible.

User Management: The User Management Interface of the API consists of all lifecycle
operations for a certain user, such as creating, updating, and deleting him as well as monitoring
his state and access and usage statistics. Furthermore, the User Management Interface is
responsible for authenticating a user upon request and providing temporary credentials, such as
session tokens, to authenticate the user in subsequent requests, and identifying the user to the
underlying COMPOSE Controller.

Service Deployment: The Service Deployment Interface will accept the necessary data to
describe a Service, containing a workflow document that is suitable to be used by the service
composition engine. It has to be able to read and interpret the document, to perform basic
logical validation on the actual workflow within. The dependencies of the service must be
viable, as well as the access rights of the users to these services. The Service Deployment
Interface will notify the user on failed validation. Valid Service descriptions will be deployed to
a suitable VM glossary on the COMPOSE platform and the corresponding Service Object will
be registered to the suitable COMPOSE registries.

Service Lifecycle: The Service Lifecycle Interface provides the user with a list of services and
Service Objects he owns. This list will be filterable and sortable, by various criteria. The user
will be able to monitor and manage his service's state, create and manage access policies and
access usage statistics of his services.

Service View: The Service View Interface will allow fetching a set of Services and their meta
information, that match set of given criteria and to return a sortable list of these Services. The
List must only contain Services the given user is allowed to access.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��+���*�	� �

4.3.2 IDE

The IDE is a graphical editor for creating composite services. It supports a full set of features
for discovery, recommendation and orchestration of interesting Services and Service Objects.
With drag and drop Service Objects and Services can be orchestrated to a new composite
service. The IDE supports powerful assistance features for validation of input / output
compatibility of code, data types, units based on chosen language and metadata. Additionally,
selected Service Objects and services can be complemented with additional logic and metadata.
The new composite Service will be validated by a workflow engine based on a processing
language. This includes a validation of input / output parameters and metadata. Finally, the
composite service will be deployed on the COMPOSE run-time including an accessible REST
interface for developers.

�����"���

The discovery mechanism will be part of the service composition engine. It will fetch Services
and Service Objects from the COMPOSE registry, via the COMPOSE Controller, that match a
given set of criteria. The discovered Services and Service Object can be directly dragged to the
service composition canvas.

#������
�����

The recommendation system is based on the discovery mechanism. It automatically discovers
Services and Service Objects that might be of particular interest to the developer, by discovering
them according to the usage frequency by that developer and by matching similar Services and
Service Objects to those the developer is using in the current context. Recommendation might
be enhanced by profiling the developer and enriching the recommendation by comparing his
habits to those of developers with similar profiles. Service usage statistics on development level
for each developer will be stored in the developer portal attached data storage engine.

4.3.3 GUI

The GUI of the developer portal provides basic entry points for providers and developers
including guidelines for development as well as wizards for registration, management and
monitoring of Smart Objects. On top on that the SDK and the underlying API is enriched with
specifications, code examples and tutorials.

��� ���
�����

The documentation section will contain a complete set of instructions to use the API, the SDKs
and the GUI, the service composition engine in particular. The SDK documentation will be
created automatically, by leveraging the power of tools like JavaDoc, PHPdocumentor, etc.
where possible. If need be, e. g. for reasons of frequent updating, this section will only point to
the documentation of the API, that might be hosted on service like readthedocs.com, etc.

There will also be a detailed manual on how the GUI is used. It will contain a short guide on
how to manage account information. Moreover, it will contain detailed and illustrated
descriptions on how to access the providers section of the GUI and which options it offers and
how to use them. Accordingly the management section for developers will be described. A vital
part of the documentation will be the manual for the service composition engine. Although a
description according to the above would be sufficient, some kind of interactive tutorial might
further lower the barrier for non-specialists and draw yet more developers.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��+/��*�	� �

Furthermore, the documentation may contain cookbooks, as a collection of solutions to common
scenarios and a guideline to best usage practices. Contribution to that section will be limited to
chosen authors.

Bulletin Boards and general question boards are better suited outside of the COMPOSE
platform. Q&A glossary sites like stackoverflow already have a big mass of developers,
answering each other’s questions. Frequently returning topics might by gathered into a FAQ
section, as part of the documentation area.

���"�����

The Providers section of the developer portal mainly consist of a list of Service Objects, and
their Smart Objects where applicable, owned by the authenticated user. Brief information about
the status will be shown in the list.

Here, a provider can register devices' Smart Objects, to make them available within the
COMPOSE platform. The section allows entering detailed description of each Service Object.
In the detailed view, access and usage statistics alongside a detailed description and the
dependencies of the service are shown. Furthermore, the Service Object's status can be changed
and the Service Object may be permanently removed. Fine-grained access policies for each
Service Object can be set.

�"������

The developers section extends the providers section by allowing access to the developer's
statistics, which are stored in the COMPOSE developer portal itself. This section will offer an
assistant to propagate a web application, that is hosted outside of the COMPOSE platform, but
takes advantage of the COMPOSE services, throughout a multitude of marketplaces, by
providing meta information tailored to each specific application marketplace.

The authentication, authorization and accounting part of the GUI, that will expose account self-
management functionality, will be found in this section.

5 External interfaces and technologies to access
COMPOSE

5.1 Web Objects

One of the purposes of the COMPOSE platform is to integrate real world objects as
computational entities (Service Objects) that provide information about their status (via sensors)
and even could initiate changes in their environment (via actuators). Web Objects are powerful
enough to be able to talk directly to the COMPOSE platform interface.

Web Objects can have different nature and different underlying implementations depending on
their nature. In order to be part of COMPOSE, Web Objects will communicate with the
platform in a standardized way by exposing a web-based API. Smart Objects will implement
web communication protocols (HTTP and Websockets) in order to be linked with their
counterparts in the COMPOSE platform.

Moreover, the interfaces provided by both the Web Objects and the Service Objects will be
compatible, if not equal, in terms of functionality, in order to map the experience of accessing
the Web Objects as close as possible to the one accessing the Service Objects in the COMPOSE
platform, but with the added benefits of integration provided by COMPOSE.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��57��*�	� �

Based on this standard interface, different topologies are also supported (proxy-based), in order
to support not only Smart Objects, but also any type of physical object with capacity to provide
information.

Figure 21: Service Objects Interfaces

5.2 Developers

The COMPOSE platform provides a set of tools that can be used by stakeholders to exchange
data between applications and the platform. SDK and Command Line Interface (CLI) are tools
used by developers to build, maintain and deploy COMPOSE services and applications. Web
components, such as IDE, developer portal and marketplace are tools used by providers, to
maintain service objects, by developers, to compose new services and to read documentation,
and by end-users to find COMPOSE applications in a marketplace. These provided tools as well
as developer applications utilize COMPOSE API to communicate with the COMPOSE
platform.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��5���*�	� �

�

Figure 22: API high level architecture overview

The COMPOSE API is a layer that simplifies and standardises communication between
COMPOSE platform components and the outside world. It will exploit the simplicity and power
of the well-known REST implementation, the HTTP protocol. This makes sure, that not only a
majority of developers is familiar with the protocol, but also that almost any programming
language and a wide variety of mature and tested tools are already able to operate on it. From
the external point of view, that of the stakeholders, the following components that belong to the
API can be identified: Service Management, Service Lifecycle and Service Objects. The API
component is built from following internal layers: Security, Traffic and Cache.

To achieve a RESTful API the management operations of creating, reading updating and
deleting, usually referred to as Create, Read, Update and Delete (CRUD) operations, will be
mapped to the appropriate HTTP methods. The payload of the HTTP requests and responses
will consist either of JSON or of XML data. While both formats can be easily transformed into
each other, with a certain degree of information loss, either format has its own advantages. The
JSON format is much more lightweight, whereas the XML format can provide additional meta
information of the data, such as data types, which can ease the processing in statically typed
programming languages. Most of the major programming languages today provide libraries for
either of these formats. Also, using the HTTP protocol, an encryption layer is already available
through SSL/HTTPS. Exposing the COMPOSE API directly has the advantage, that third-party
tools can be created, like device- or platform-specific middleware, that access the API, allowing
e. g. easy registration of a device's sensors and actuators as smart objects. To ensure all
necessary functionality, the COMPOSE API exposes operations that translate directly to the
underlying COMPOSE platform controller interfaces, where possible.

6 Mapping the use-cases to the architecture

This section discusses how the use cases for each Project Pilot utilize the COMPOSE core
platform in order to deliver the envisioned functionality. The Pilots (Smart Space, Smart City,
and Smart Territory) consist of several use cases that demonstrate the composition of services
and communication between Web Objects using COMPOSE core components. The mapping of
the use cases to the COMPOSE architecture refers to:

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��5
��*�	� �

� Identification of the COMPOSE core components (Objects, Web/Smart Objects,
Service Objects, Services, Applications) that are used in each use case.

� Communication and data exchange (i.e. main flows) between the core components.

The use case mapping will assist in identifying how the proposed architecture will be utilized
for both the developed Pilots but also for future developments based on the COMPOSE
platform.

6.1 Smart Space

The Smart Space use-case focuses on IoT-based services for indoor environments such as, e.g.,
retailer stores, office or home environments. The relevance of this scenario is rooted in the fact
that, according to Strategy Analytics, people spend 80-90% of their time in indoor
environments.

In the Smart Space use-case, we will focus on a Smart Retailing application scenario, in which

� The analysis of the user shopping experience is leveraged in order to improve the retail
operations

� Customers' daily interactions with products are augmented by offering additional
information and services around unique individual product identities and indoor
location-based support for personalization. In the considered use-case, products and
users within a given retailer shop will be localized in real-time and used as the basis for

o Understanding the mobility of customers within a retailer shop

o Provide personalized services such as, e.g., personal shopping list, to end-users

o Provide location-based support to retailer services such as, e.g., indoor navigation.

Due to the characteristics of the use-case (high number of objects, high number of users,
different potential applications) the COMPOSE platform will demonstrate its potential not only
at the development time but also at the runtime, managing in real-time the information
generated in/by the use case components.

� Objects: this use case will include two types of objects, shopping carts and products.
Shopping carts can be used by customers when doing shopping in the retailer store.
Each shopping cart will be equipped with an active TAG that will be used for localizing
it in real-time on a bi-dimensional space. Products can be explored by interacting with
them through some form of proximity interactions such as, e.g., QR codes or NFC.

� Web Objects: smartphones of users will work as Web Objects, providing information
about the sensors present in the mobile.

� Service Objects: apart from the corresponding Service Objects of the Shopping Cart,
Smartphone and products, additional Service Objects for the content of the Shopping
Cart and User information will be created to connect the sensed information to the rest
of the COMPOSE platform.

� Services: this use case will create several services that exploit the information pushed in
the COMPOSE platform by the Service Objects. Some services will analyse and
provide location related information, for example, the routes followed by the customers
in the store, as well as notification services, like in-shop presence. Moreover, store
based services involving products, like a shopping list manager or social network
services will also be included.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��5���*�	� �

� Applications: COMPOSE applications developed for this use case will have two
perspectives, the customers and the store managers. For the customers a retailer mobile
application will be developed. Through the mobile application, users will access
personalized services for augmenting their shopping experience. For store managers, the
application will provide analytics about indoor mobility profiles and user interactions
with products.

6.2 Smart City

The Smart City pilot consists of two use cases (UC)

� UC1: multimodal route planner for commuters and Electric Vehicle (EV) drivers.

� UC2: Plan daily running.

From the proposed architecture, the following COMPOSE components have been identified for
utilization by the use cases:

� Web Objects: The abertis platform provides current status about air pollution sensors,
environmental sensors, sprinkler sensors, car park sensors, electrical vehicle car park
places and cameras information. It has the ability to communicate over HTTP with the
COMPOSE core and also establish bi-directional communication links (used for acting
on actuators, for example, users will be able to switch off a sprinkler when it is near
their planned daily running). In addition, real-time social media feeds Catalonia transit
incidents, Barcelona transit status and Barcelona public transport will be exposed to the
platform as Web Objects.
Each UC has different Web Object involved.

o Web Object for UC1 are the list of places for recharging electrical vehicles and car
park sensors.

o Web Objects for UC2 are the environment sensors, pollution sensors, sprinkler
sensors and list of security incidents.

� Service Objects: Service Objects will be developed to serve as endpoints for connecting
Web Objects to the COMPOSE core platform. SOs will be needed for interacting with
Web Objects (i.e. sprinkler sensors), for exposing information related to the status of
elements (i.e., list of electrical vehicle car park places) and for subscribing to
notifications (i.e., car park sensors updates).

� Services: High level services will be needed for monitoring car park sensors and
notifying users that there are free spaces to park the car in their route. Also a composite
service is needed for using the multimodal route planner.

� Applications: The interaction between the core platform and the stakeholders (users)
will be performed through COMPOSE applications.

The following figures illustrates the mapping of the uses cases components with the COMPOSE
core components.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��5+��*�	� �

Figure 23: Smart City Pilot

6.3 Smart Territory

The Smart Territory consists of three use cases, UC1: location recommendation and automated
contextual information delivery for sports, UC2: contextual crowd-sourcing for sports and UC3:
user activity tracking and gaming.

From the proposed architecture, the following COMPOSE components have been identified for
utilization by the use cases:

� Smart Objects: All use cases involve the usage of smartphones. User smartphones will
provide user data such as location and activity levels. The Smart Objects will have the
essential resources (network, computational and storage) to communicate with the core
platform (through Service Objects and other interfaces), as well as to store application
data and perform data processing (e.g., calculation of user activity levels, calculation of
user proximity, etc.). The meteorological sensors that will be used in the context of the
Pilot are also considered Smart Objects. An OpenData service will be utilised
(Meteotrentino) that provides a RESTful API for retrieving weather information and
snow data for specific locations in the Trentino area.

� Objects: Additional to Smart Objects for the Smart Territory can be QR codes or NFC
tags used for identification/verification of the location of users in indoor or outdoor
places (e.g., for verifying that user have completed a sport route or reached a specific
point of interest, etc.).

� Web Objects: The smartphones in this case are also considered Web Objects since they
have the abilities to communicate over HTTP with the COMPOSE core and also
establish bi-directional communication links (used for receiving notifications, etc.). In
addition, meteorological sensors will be exposed to the platform as Web Objects. The
sensors provide information about current weather, weather forecast and snow status in
the region of Trentino, and specially for points of sport interest (ski slopes, etc.). The
sensors already provide the available information in real-time through HTTP interfaces.
To expose the latter information in a more structured way for the needs of the use cases
(e.g., sensor readings per user location), appropriate Service Objects will be developed.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��55��*�	� �

� Service Objects: Service Objects will be developed to serve as endpoints for connecting
all Objects to the COMPOSE core platform. SOs will be needed for interacting with
tagged objects (i.e. objects with NFC/QR tags), for pushing user-related sensor data to
the platform (e.g., location and activity levels), for subscribing to notifications (e.g.,
weather updates) and for exposing the information from the meteorological sensors. All
communication and data exchange between Web Objects, Smart Objects and Objects,
and Applications will be performed using Service Objects.

� Services: High level services will be needed for monitoring weather updates on specific
locations and notifying users that are located in close proximity, for providing location
recommendations based on weather/slope details and user preferences, as well as for
identifying and notifying about the location of user’s friends.

� Applications: The interaction between the core platform and the stakeholders (users)
will be performed through COMPOSE applications. Such applications are envisioned to
be mostly web-based or mobile applications. Such applications will provide
management and maintenance features (e.g., data maintenance, web-based user
registration, etc.) but can also be potential web-based versions of the Smartphone apps
that will be distributed to the users. The same Smartphone that is used as a smart object
providing data to the platform may be used as well to present information retrieved
from COMPOSE (location recommendation, weather updates, important messages,
etc.), and thus serve as the end-user application host.

The COMPOSE Developer Portal can be utilized in the future in order to develop additional
applications that will enhance the functionality of the Pilot.

The following figure illustrates the mapping of the use case components with the COMPOSE
core components.

Figure 24: Smart Territory Pilot

On the Web Object side, the Implementation Framework refers to frameworks like the
Appcelerator Titanium framework that enables developers to port code into different mobile
operating systems (Android, iOS, etc.). On top of that, COMPOSE will provide in the form of
libraries the communication SDK so that future developers can easily integrate communication

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��5	��*�	� �

with COMPOSE back-end into their mobile applications. The Sensor SDK is, in the same sense,
is a library provided by COMPOSE that will assist developers in reading sensor information
from a Smartphone device (e.g., accelerometer, location data, etc.). The interface is finally the
graphical interface that the user interacts with the mobile application

7 Summary

The architecture presented above forms the first stage of an iterative approach that will
culminate in the final architecture document due in M24. This living document will be enhanced
as individual tasks get more mature, including the realization of the pilots, internal components,
and crystallized requirements. We started off with the requirements document to ensure that the
architecture proposed covers the stated requirements and used the pilots as validation scenarios.
We provide an overview of the different platform components and highlight the interfaces and
dependencies between them.

This document details the first version of the COMPOSE architecture. One of the primary goals
of this document is to galvanize all the consortium partners around a unified understanding of
the goals and the way to achieve them, while making sure that there's common understanding
and agreement as to the big picture as well as to the division of responsibilities among the WPs
and the interfaces between different components and their dependencies.

�

Figure 25: Mapping components to WPs

Thus, at this stage we can break up the large overall COMPOSE architecture and assign
components to WPs. The lower layer, interacting more closely with real world Web Objects is
handled by WP2. This WP is in charge of the ingestion of Web Objects into the system, build an

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��5���*�	� �

internal representation of these objects as Service Objects, and support other components
wishing to interact with Web Objects data and operations. WP2 takes care as well of handling
data stemming from the associated Web Objects and employs sophisticated data management
schemes to support higher level services interaction with this data, may it be in the form of a
plain or a composite Service Object.

WP3.1 has the overall responsibility over services creation support aspects with three main
responsibilities, namely a service registry supporting service discovery, and associated
capabilities built on top of that service to provide recommendation and composition engines.

WP3.2 is in charge of service deployment and overall lifecycle management and monitoring.
This is the WP in which dynamic and run-time aspects of the services are put into place.

WP4 provides the run-time that will host all entities and the associated communication
infrastructure. The run-time will consist of a customized IoT PaaS providing a cloud
infrastructure to host and efficiently manage all entities. The communication mechanism will
enable all entities to communicate with each other using several communication paradigms.

WP5 has the overarching responsibility for security throughout the platform. This is a cross
cutting activity that touches all other WPs as we take a "security by design" approach to ensure
that we produce a viable platform which users will trust.

WP6 is in charge of external facing aspects of the platform, mainly a developers' portal that will
be the gateway through which external developers create new services and inject them directly
and automatically into the platform.

Finally, WP7 will serve as a validation point of the architecture by constructing several real-life
use cases to be developed and run within the COMPOSE platform.

The resulting platform is targeted mainly towards developers and will serve as a marketplace for
the location and re-use of Service Objects as well as COMPOSE services. In addition it may
serve as well as a marketplace for code templates, by which a successful COMPOSE based
service or application may serve as a template for similar such services that need to be
developed for slightly different domains.

8 Appendix 1 – IoT-A

The Internet of Things Architecture (IoT-A) is a European integrated project tackling the
definition of a reference Architecture model for the Internet of Things. The project started in
October 2010 and will end in November 2013.

The main motivation behind the IoT-A project is lack of a common understanding of what the
Internet of Things is, especially from an architectural perspective. Nowadays, the term Internet
of Things encompasses a large variety of solutions related to design of systems, which are able
to interact with everyday objects, being these sensors, RFIDs or smartphones. However, while
there has been a great progress in the availability of devices and systems in this field, not so
much progress has been made in the definition of common reference models with respect to
interfaces, communication protocols, etc. The result is an extremely fragmented area, where
many solutions exist, but each one is confined to specific technologies or specific application
areas, with limited possibilities to integrate them. This of course is limiting the impact of IoT in
the every-day life services and, in particular, it is slowing down the progress of such
technologies.

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��5���*�	� �

In order to deal with such fragmentation, the approach of the IoT-A is to propose a Reference
Architecture (RA) [IoTA-D13, IoTA-D14], which should represent the basis for designing any
concrete Architecture, e.g., specific implementations to be used in application scenarios. This is
combined with a Reference Model, which is responsible for defining a common understanding
of the IoT domain. The combination of the two is called Architectural Reference Model, and
represents the main objective and ambition of the IoT-A project.

The modules organization of the
reference model is represented in
Figure 26. The Domain Model
introduces in a technology
independent way the key IoT
concepts. As an example, it defines
the reference scenario, composed by a
User (person or Digital Artefact)
interacting with a Physical Entity
(PE), which can be almost any object
or environment. PE are mapped to
Virtual Entities (VE), which are a
synchronous representation of PE. In
this representation a device is only
provide the linkage between PE and
VE. Through services, it is possible to
interact with PE, through their VE

counterpart. Services can be (i) Resource-level, when accessing only raw resources of PE, (ii)
Virtual Entity Level, when interacting through VE and accessing more complex interactions, and
(iii) Integrated Level, when supporting service compositions.

The Information model covers the data models required by the Domain model. This includes the
information flows, storage and how they are combined. As an example, it defined the data
models for VE, for services and for their relation. In addition, it specifies in detail the notion of

data, which can be of various
types in an IoT system (e.g.,
real-time, derived, etc.)

Finally the Functional Model
(FM) defines functionalities,
related to the Domain Model
that are needed to run the
platform. The main objective
of this component is to break
down the complexity into set
of functionalities that can be
used to create IoT systems.
Figure 26 presents the main
components of the FM, and it
includes 7 groups of vertical
functionalities, and 2 shared
ones (security and
management).

The IoT-A Reference
Architecture provides a

domain and application independent architecture It is provided in the form of views, to be used

Figure 27: Functional Model

Figure 26: Modules organization of the
Reference Model�

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��5/��*�	� �

in the modelling of structural aspects of a reference architecture. In particular, three views are
presented:

� Functional, which organizes the overall architecture into functionality groups,

� Information, which defines the structure, store and exchange of data,

� Deployment and Operation, which guidelines for the real implementation and
deployment of the system.

The following figure depicts the Functional View of the IoT-A Reference Architecture.

�

Figure 28: IoT-A Logical View

In Figure 28 all functional components are described in detail.

Finally, the Information Model describes all the components that handle information, and how
information will be modelled. This includes the data model of Virtual Entities and the semantic
associated to it. But also the services, which are used to consume the data originating from VE,
or to actuate them.

IoT-A Reference Architecture Model in COMPOSE

The IoT-A Architecture Reference Model has been used reference and inspiration for the design
of the COMPOSE system and architecture, both in terms of functional components, as well as
best practices. We report below a high level mapping of the COMPOSE architecture to the IoT-
A ARM, according to the various views provided.

Reference Model: in accordance to the IoT-A ARM, COMPOSE clearly distinguishes its
design between (i) the Domain Model, which characterizes the main domain elements of the
architecture (e.g., Web Objects, Service Objects, Services and Applications), (ii) the
Information Model, which specifies the data models, including semantic description, of each
constituting element and (iii) the Functional Model, which groups various functionalities

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��	7��*�	� �

required by the platform including, e.g., service discovery, assisted service composition,
security, etc.. Similarly to IoT-A, the reference scenario is that of a user interacting with a Web
Object (Physical Entity) mediated trough an application (e.g., web-based, mobile, etc.). Physical
Entities are accessed via their digital counterparts Service Objects (Virtual Entities).

������ ��	����� �����������

�& ������������ � 4���������� �& �����������������&�������3���'�

2���!����������� � �������������� � #�)�������!����������*��& ������������ �

,!)(����'��������� � ��������� ��(��������� �*� �& ������ ����� � ��'� '�)�����
��!��������������'�������!)(������������$�

�

Similarly to IoT-A, three basic types of Web Objects are considered in COMPOSE, Sensors,
Tags and Actuators, where each one of them can vary in terms of sensing, computation and
communication capabilities.

In particular, COMPOSE Domain model details the various entities involved in a generic IoT-
based application delivered over the COMPOSE Marketplace. This includes modelling how a
Smart Object can be injected into the platform, the digital counterpart (Service Object) and the
way the data streams being produced can be consumed by services and eventually applications.
This architectural layering defines all the main components of COMPOSE platform, and their
interactions, independently by any specific implementation or technology.

The Information model in COMPOSE defines how Web Objects are represented and modelled
in COMPOSE. This includes the data structures that will be managed by COMPOSE, and the
information flows among components. As an example, the Information Model specifies the
information model for Smart Objects to be registered in COMPOSE, for raw data streams
originating from Web Objects to be ingested in COMPOSE (e.g., attributes, attributes types,
quality parameters, etc.), for semantically enhancing such data streams with information needed
for augmenting services and applications. Furthermore, it defines the semantic annotation
required for facilitating the service discovery and recommendation.

The Functional Model in COMPOSE details the functionalities, and their grouping, that will
provided by the platform in order to ensure a proper functioning of the system, as well as the
related services. Examples of this includes service recommendation (e.g., service discovery,
recommendation, etc.), security (e.g., privacy, authentication, provenance, trust and reputation),
monitoring, messaging.

IoT-A Reference Architecture: COMPOSE high-level architecture if fully aligned with the
IoT-A reference architecture, as depicted from a functional view. In the following table we
report the mapping of COMPOSE architectural components into the IoT-A RA functional
components.

������ ��	�����

��((!�������� � �����������((!�����������*�����!��!��9�
(����)��)�?)��!������'@�(�(����&��@��
�@�
���$A@���!���)���'��''������)@�)���3� �
(���)�(���$�

�
�
��������	
�������� ������������������������������ �������������� �!����������
�

"� #�$
$��%����������������&�����!���'��!(���� ��)��	���*�	� �

2���!�������� � �����������)���� @���������(��������)@����������
�:��!�������

%�.��������� �����������������'����������(���)�(����
(�'!����

���������)���B����� � ������������((��'�����@���������'������� @�
��������' ��(�����(���������@���������
��&����������

%�.�>!�������������������)�(���� 6��������� ���'���� �!�������� E�

���!��� � ,!�&���������@�;� ��:�&��)��(���)�(���@�
,!�&����������@�����������@�.�!���C�
���!�������

����)�(���� ��������#���� (���@�D���(���)�(���@�
��������'���� (���@��!���������)@����$�

When integrating the functional view of the IoT-A architecture with the most relevant non-
functional requirements, concerning the Evolution and Interoperability perspectives, also in this
case we see that COMPOSE architecture and design requirements are fully aligned.

9 Bibliography

1. http://jena.apache.org/

2. http://en.wikipedia.org/wiki/Cloud_Foundry

3. http://www.couchbase.com/

4. http://storm-project.net/

5. http://www.elasticsearch.org

6. http://www.w3.org/TR/rdf-sparql-query/

7. Philip C. Roth, Dorian C. Arnold, and Barton P. Miller, "MRNet: A Software-Based
Multicast/Reduction Network for Scalable Tools", SC2003, Phoenix, Arizona,
November 2003.

8. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable
peer-to-peer lookup service for internet applications. SIGCOMM Comput. Commun.
Rev. 31(4) (2001) 149–160

$� %�������&�� '�������	
��� ����� � ���	���� ���������� � ����� ���� ���� �������
���������������	����� !��"#�"��

�#� %������(&�� '�������	
��� ���(�)�*�����+��� 	��,����� !�	�� ���������� ������
�����,�������"�#��������*��-	+��.!��,������"#���

