Collaborative Open Market to Place
Obijects at your Service

"}
il

D1.2.1
Initial COMPOSE architecture document

Project Acronym COMPOSE

Project Title Collaborative Open Market to Place Objects at y®envice
Project Number 317862

Work Package WP1 COMPOSE architecture design and specification
Lead Beneficiary IBM

Editor Benny Mandler IBM

Reviewer lacopo Carreras UH

Reviewer David Carrera BSC

Contributors TSC ALL

Dissemination Level PU

Contractual Delivery Date 31/10/2013

Actual Delivery Date 31/10/2013

Version V1.0

"HSS % & !y) *

Abstract

The COMPOSE project aims to perform research legtrthe development of an 10T platform
that will easily enable relevant stakeholders tcebgaged. Stakeholders include (i) developers,
who wish to develop services and applications basegkal-world smart objects (i) Smart
objects providers and owners who wish their smbjécts to be exposed and available to
developers, and (iii) end-users who wish to makeafi®xisting services and applications. The
goal is to create such a platform that will autoroally take the burden off the identified
stakeholders and enable each one to concentrathednareas of expertise while leaving all
systems related aspects as well as productiviatedl aspects for the COMPOSE platform to
handle.

The main aim of this document is to explain in idiét@ architecture of the proposed platform
including main aspects driving to this architectamed the manner in which the proposed
architecture will enable achieving the ambitiousposet out at the beginning of this journey.
This document was thought of and written with gguirements document (D1.1.1 "COMPOSE
requirements") in mind, and the forming use casea eonstant validation and reference point.

This deliverable represents the first complete ivarsf the architecture document, but is not
seen as the final product, rather it is the firgysin an iterative process that will be further
refined as we advance with the design, implememtasind validation of different aspects of the
project. The final COMPOSE design document is dud24, a year after this document. We
took such an approach due to the complexity andi+tishensionality of the proposed platform,
thus, this document serves as a starting point frdrich all individual tasks in the technical
WPs can start from, but we leave room for improvesnand for getting things right as we gain
actual experience in the development parlours.ddition, possible changes in the
requirements document will have to be reflectediinre versions of this design document.

In this document we start from a high level deswipof the architecture and then delve into
more detailed explanation of the different compdsieend the interactions thereof. In addition
the main ideas and interactions are demonstrateaiudph the introduction of the platform as
viewed by the main stakeholders, as well as by mgppe intended use-cases to the proposed
architecture.

"HSS % & !y) *

Document History

AU,

Version Date Comments

V0.1 04/06/13 Initial version

V0.2 12/06/13 Comments from FOKUS, BSC, CN, PASS/
Abertis, OU

V0.3 11/08/13 Third draft ready for partners to trifite their
designated sections

V0.4 10/09/13 Incorporate comments from INN, BSGGV

V0.5 20/09/13 Incorporate contributions from FOKW3Y, BSC

V0.6 02/10/13 Incorporate contributions from OU eflis, UH

V0.7 15/10/2013 Incorporate contributions from Rass

V0.8 20/10/2103 Incorporate changes from the p@st &chitecture
deep dive

V0.9 25/10/2013 Integrate all last contributionanfr partners

V1.0 29/10/2013 Consolidate a final version

#3 %

Table

of Contents

AL AL AL A A A A AL A A
3 B1V A1V AT A1Y ATV ATV ALY ATA BTVATYATY A8 ATV ATV AV AT BTVATVATY)8 D

*)!

*

(ERRRRRRRIILRARRRR

%
$

, &
$

$$

$$

$$

$$+ (PEFFEPSSSPPP S SIS B S I NS

PEEESTISSTEISTEISSELESSEESSSEESSTESSEHS

T $FPFPSPSPPP PSP PP P BB ELEHEPEEBI PSSP

STSESSSSTSSESSSSHE

L3 AL MLE AL s s s s g
HeiIe s I I IS IS IS IS IS o)

N

o (') & & ! $%$% PEETTEIFSSSTEIISSSTTEIFSSSTEIESS SIS
1)& 2 333333355 $SSHHEHHHHTL TSI SSSS$$$

S S S S S S AR

4 PP PP P PSP P BB PP DB B D P B S S

SRR AR AR
$3$333333SSSS S S S S HHHHHHHN

A A T T R TR
B T T AR R R AT SR T TR SR U S RN

EUEEERE AR AR AR AR

$I5 . SO0OEIEISIOeEO IS IO SIS TSI SIS SIS

$$
$$
$$

$ $+ 6) $$$$$$$$$$$$$$$$$$$ &b et
PNNNNAVANANANANAN NNV N ANANANANAN AN ANAVAVAN YD

* (% (1 3333355555555 SSSSEPPPPSSSSSSSSSSSSETTTTEEEESESFS SIS SSSSSSSSSSEEe

6! ((PEITSTHISSES$S SIS S HIHEHBHBP SIS ST ST LTSS PPEEE PSS LTSS SSE$S¢
(3& PEEESTEIESTEISSEEISTEISSTEISSE$SS
EERRRLUEERRRRUEERIT AR AR AR AR SRR N AR AR A AR AR RN

SSSSSSESTSSSSESES

ESSSES

$85 I F ($EIITSSTEEIISSS S THPPEPPPPHPES IS SS TS PSS PSSSPEEES$SSST S
$ L))& 8 & & $ETEEEE FETTTEIFSSTTISSSSTETSSPSEEEBISSSTEEIISSSSES
$+ 6 & 3 &%.,3PEPEEIPISSETIEIPSSTTEEIPSSTTIISSETEESPSSTIEESSSSTTIISSSTEHSS

(&' EERRNRUERA EEEREAREERR AR BRI
$ P9 & 1 ($PEEES PSS SSSSEELTETEETE TSI SSSSSSSSSSSEEe

"HSS % & !y)+ *

$ 4 '9) ‘ () (3PS SSSSSLETEEEES 5
$ # 9 " $S58$ EERERREREEE ARG
$+ "1 9% 3& & *(FTTTEIIIETE FESTTTEIIESSTTEIISSSTTEEPSPSTEEISSSSTEEISSSHSS

+ # ") 3553355555335 F TP PSP PPSSSEEPPPPEEBESSSEESS $
+$! , * PSS PEEISTEIFSTEISSIISSEIPHTE PSS ST TS SS
+$$ $ESTEPS SIS SIS SIS SIS HHHHHTHHTHHTHHFD SIS ST ST LSS S PSS SHHI SIS

+$$ S SSSSSSSSSS BN RRHHB S S SPS PSSP SSS PSSP

ST L B U e e G S S S A T S
+$ (0 ST SIS SSSSSSSSSSSSSSSSSSSSSSSSSIBSSSTSSSSSFHS

55 | SESSESSSSSSSSSSSSSSSSSEEEEEEEEEEESEFSSFEISS

$SEES

+$8 # () (SOTEIIISSSTIESSSHH S IS S S SS ST T TSP PSS PP SS LTSS SS ST BB

t$$ # $EEEISSESSST S ST HH

$$B+ %. 9 & * (6. (EISISISISISISHHIISTITITITITITITITITIISOTITITITITSTSSEEHS
+$$5 (ORI U R
I D E S UL

$SSEH$S

$EESSS
138 #,5335555553555355535555 PSSP PSS PSPPI PP EPPPIS PSS PSSP PSSP PSS BB

1335 %# PPPPP PP PSS BB S S S S I RS B

+3 <=% PP S IS SIS BB SS S S B S RIIB PSS S S S S S B B

AR
5 &) 33335 SSSSS ST ETHHFPS SIS SSSSSSSSSSLHS:
5% 4 $EEEISETISTEEESTEI ST SSEES ST SEESSTESS

5% # FEPPPPPPPFPPFF PSP PSS BB EERH PSSP

) & ! & & | $EEH8555$ $$$$PSSFSSSSSSSSSSEEEEEEESPFSF ST FFFFSSSSSSSP:
$ (5SS SSSSSSSSSSEEEE S S

phacteed d
¥ A1V ATV ATV AT AN

$ (FETIITTEISTEHSTEISS PSSP SEESPSHSSSEES
$$SSSES

$ (. R TR S S
I(($39PFTPSSTPTPSPTPSSSHY

NN NS N

"HSS % & 'y) 5 *

/

, 1 8% ., $3SSEITETEES TSSO S HEHHHHHEHHHHEP S ST

>) & 3335553555 $ ST ES BHHHHEHHHHHHEIIHERE 5555

List of Figures

)!

I +9) SEEITEEISTEISSTETHPHHPHETE IS SST$SS
P89 (% 3 $E533STTTEIESSTPEEIESSTTEIISSSSEEE$S

9 (R SRR A A AR AR RS $$/
9,& ! &)& (1 53339 EEEEREERRRRREIEEE AR N AR ARSI
9 33553555 SSSSSSSSHHHHI PSS SSSSSSSSSSEES $$ 5

9 PO 3555888 ERLEERREEERE AR RA AR ARA AR AR R AN RN
9 * 3P5ETSTISTET TS TIPS TS SIS SSEES

9, & !)) $IPPPEEES $ETSSLSSSLELEELEEEEEBS

9-* = ERELEERLRERRRRER AN AR AR

79 ()(PEETESTEIPEEES FSTEITSEEISTEEISTE$SSES

9 () & ! 333388 ERRRREEBRREAR SRR T AR AR AR AR USSR
9 (" & ! 3555883 SRR EBRRRR U SRR R ARARR AR
9 ! ,& ! 3 $$SLLEESS $ESTTEIISSSETIISSSSTES $$$$S

+O#) (1 3IITTTTEEIIISSTETPPEIISSSTTEIESSSTTES$S $$$

59 # PSSP FSSSTETWB IS ST FSSSS$SSSS

9 "1t & ! 3$%% ERRRRLUEERRRRRUE SRR ANARA R ARAAR A SRR
9 I SEEETITTETEEHES SETEIIESSETEITESSTTEEISSSEEESSSSEEEEESSSEHELS$SSSS
9 ((%* 1] SEEIIISEE SITTIIISSTSIFSSSESSS $$55S
9 ((& & ') PE88$S EERRREE AR SRR AR AR AR SRR
79 1) $3SSEEIISSSTSSHHHBSSESSSSSSTSS$$SS

9 % * $ISEEITTEIEEE $STEEISTETSSTEESSEE$SES

" 4SS % & 1y) *

) 9, %&)& & ! 33$3% ERLEEERRAEARREARE R RRA RN AR AR AR S SRR SRR
)9 ($PSSTTEIISS ST TS HHBPHHPSSSST S I$SSSEHS

$$$$$ 5+
)o+9 (. $SETEEIES TS T THBHBFSS ST SSSEEH$S

$$ 55
¥ 59) (4 $IIIFSTTEIIPS FETTITIFSSTTETIFSSTESS PSSP STESSSSEBSSSSSS
Y o9) (4 $EIITTTTTEIES IS TTTIISSSTTIISSSTTESPSSEEEEESSSSEEEES ST SS

) 9! ' PEEITTEIISTISSEEESEEEPSEESSTEISSTESSSES
) 9%.,-) 2 3TEEITTEIISTEISEEESSEEESSEEISTEISSEES

List of Tables

9, (3ITTTHEIIISSTEEIISTHPPPEEEPPPPPPSSTTIESSS

S
960! (, & ! ()P5333% EERBERUUERURRRUERNRRAR AR AR AR ARAAR AR
9%., (1 $TTTTETIISSTTEEIS SETIFSSTTEISSSTTEEIS PSSP SSEEEESSSEEISSSES
+9)%, % & ! & ! $EETEIIESSTTEIESSTTISSSSTEES

" 4SS % & 1y) *

Acronyms

Table 1: Acronyms

Acronym Meaning
API Application Programming Interface
CA Certification Authority
COMPOSE Collaborative Open Market to Place Objati®ur Service
CRUD Create, Read, Update and Delete
EV Electric Vehicle
GUI Graphical User Interface
laaS Infrastructure as a Service
IDE Integrated Development Environment
IDM Identity Management
oS Internet of Services
loT Internet of Things
PaaS Platform as a Service
PDP Policy Decision Point
PEP Policy Enforcement Point
SDK Software Development Kit
SO Service Object
UAA User Account and Authentication
ucC Use case
WO Web Object
WP Work Package
"HSS % & '\

1 Introduction

As ever more internet connected smart objectseirglput into use, touching upon many
aspects of life and society, while producing laageunts of data, not enough emphasis has
been placed on the creation of useful servicesapplications making good use of all the
available smart objects. Internet of Things (lo&¥ lheen coined as the term to describe such an
environment. Even though there are various effortproviding services for the 10T, what
seems to be missing is an integrated ‘'developrdefitery platform’ for this field, which will
follow the process of creating such services frtgiinception, through its design and
implementation, all the way to its deployment ardaaition. Such a platform would enable 10T
based services to go main stream. COMPOSE ainasktetthat ambitious goal, and along the
way unleash the full potential of the 10T by prdwigla platform that will make it easier for
smart objects providers to offer their service liedne hand, while making it easy for
individual developers and SMEs to create and dejplogvative services based on the available
smart objects on the other hand.

COMPOSE aims to provide a technological platformefasily creating services based on the
Internet of Things. As a consequence, the simplifon of absorbing internet connected smart
objects into the platform, and using them in theation of new services is a centre piece in the
COMPOSE architecture. In addition, a developergastenvisioned to provide easy access to
the platform for developers to create and publesiv services. The developers' portal in turn
will interact with a cloud-based supporting run-invhich is designed to automate many
aspects of the deployment and execution aspects.

COMPOSE will ultimately provide an open and scatgilhtform infrastructure, where smart
objects will be ingested and represented in thiéqula in a readily available form ready to be
consumed by services that may be combined, managddntegrated in a standardized way, to
easily and quickly build innovative applicationsarsecure manner.

End User Developer Object Owner
i Applications
=
Services B g g g
— T 301 3 F
Service Object J = Z 5 3 %
b :
Data Mgmt | Communication Bus |[Registry
' Run Time

Figure 1: Main Components

"HSS % & 'y)/ *

Figure 1 depicts a high level schematic view of @i@VPOSE platform. External stakeholders
interacting with the platform are either (i) deyges, introducing new services into the
platform via a developers' portal, or (ii) smarjeults owners / providers, who wish to have their
objects available through the platform, or (iiidemsers consuming services and applications
provided by the platform. The developer interadthwhe platform via a developers' portal that
enables him to locate existing COMPOSE entitiesh@form of services) which are of interest
to him, and create new services potentially baseexisting ones. In the process of creating
new services the platform may help the user viamenendation capabilities as well as an
assisted composition service. The components mankgitik represent COMPOSE developed
capabilities provided via the platform that helpelepers in their interaction with the platform
to devise new services. The "pink" capabilitiessangported internally by a services registry
which holds semantically searchable data on COMP@@ites that exist in the platform, or
are publicly available as services ready to be usduk platform (e.g., external Weather API).
On the other hand components marked in blue represel products that will be created by the
developers and may be made available to other alesed and end-users.

Components marked in yellow in Figure 1 represetgrnal platform capabilities which are at
the core of the running platform. The data manageitager is in charge of absorbing all data
flowing in from the external smart objects and paris all calculations and transformations
required by running COMPOSE services. Securityrauiions take place at different layers of
the platform, from static analysis at services tio@aime to dynamic monitoring and
enforcements of data flows and security policiesiattime. The monitoring component will
aide the platform management layer by providingrimiation about the state of different
entities and aspects of the running system. Whdsvaloper is ready with a new service he can
use the automatic deployment platform capabilitintooduce the newly created service and
make it runnable and hosted by the COMPOSE platform

Components marked in light blue represent the Ivdisgstructure on which COMPOSE entities
run on and communicate. The cloud based run-tiniehast all COMPOSE entities, while the
communication infrastructure will ensure proper commication between running entities.

End users on may interact with the platform vilia end-users portal. The portal may serve as
a meta market place pointing to existing COMPOS&ed applications.

In Figure 1 the recommendation and discovery coraptsaided by the internal registry
represent design time activities and capabilitib8enthe rest of the figure focuses on run-time
activities.

Key to the establishment of the COMPOSE visionimnevations spanning several areas:

loT Platform as a Service — will provide a custoaizloud based platform to ease the
development, deployment, running, and consumptfdobased services.

Developers' portal — Will help external develop@reughout the cycle of creating a
new service based on smart objects. From locdtiegiésired base services, through
the addition of user defined logic, and compositiétih additional services, all the way
to the automatic advertisement and deploymentehtwly created service.

Designing, implementing and exposing the smart @bjas a Service concept —
including ingestion of smart objects into the path in an easy and standardised
manner, with standard access to objects' dataalodlation based on it.

Extensive use of semantic based technologies Ye tiie external developers'
experience by populating an internal registry ohastically enhanced services that is
exposed externally via an entity discovery mechmanibhese technologies will serve as
the basis for a composition and recommendatiomesgivhich should significantly
ease the developers' burdens.

"HSS % & 'y) 7+

Security and trust will be kept within the platfoemd will be transparent to the user to
a large extent and will alert the user upon theadisry of potential risks. This aspect
will include data provenance capabilities that wiick the path the data takes and its
associated policies.

Scalable communications technologies will conn#¢€@MPOSE entities providing
membership services as well as advanced group coination capabilities.

Standardization — the COMPOSE project is tryingtimulate innovation and
acceptance in the field also by adopting an openstandardized approach. Having
W3C on board and reaching out to external intedegéeties is the way we see for
going forward.

The main outcomes of the project are the architectpecification, and a reference
implementation of a customized loT Platform as evise (PaaS), including all detailed internal
and external facing components. PaaS refers toual domputing concept which offers the
developer and deployer of cloud based applicatibasnfrastructure needed for creating and
deploying successfully such applications on a clemdronment. Basic services and libraries
are provided by the platform as well as the HW mrashagement components needed to run the
applications.

This document focuses on defining a high levelfpiat architecture and is the first release,
which will be further developed and detailed inoagecutive document release. Thus, this is
envisioned to be a live document which will be atca point for all major advancements in the
understanding of the underlying technologies amif ihteractions. The goal of this document
is to form the basis for all COMPOSE componentsghesl and implemented in the various
Work Packages (WP), as well as highlighting therittions between the different WPs and
tasks.

The rest of the document is structured as foll@&extion 1.1 discusses the main set of
requirements that led to the establishment of tlieeat architecture. A high level view of the
COMPOSE architecture and its main component iseptes in Section 2. Then, in Section 2.33
the platform is introduced from the point of viewtbe different stakeholders. Section 4 dives
deeper into a more detailed design of the diffecemtponents and layers within the platform.
Section 5 provides further details as to the madésteraction between external entities and
the COMPOSE platform. Finally, Section 6 providesintroduction of the planned use cases
and maps their planned activities to the architecuesented, validating that the design put
forward can indeed cover the envisioned pilots.

1.1 Major requirements leading to this architecture

The "first among equals” in the long list of COMP®&lated requirements leading to the
presented architecture is that of consumabilitypelst making the system easy to interact with
for the main group of target audiences, namely ld@egs. In the developers role we include
both service developers (more sophisticated deeedms well as people wishing to integrate
their Smart Objects into the platform. This reqoiest, with its main implications on the
external world outside the COMPOSE platform, dritkessway in which internal components
are designed and operate, with as much automatishXaaS (Everything as a Service)
philosophy, starting from the smart objects thenweselall the way to the design and
deployment of the run-time hosting the platform.

The requirement for usability leads immediatelytte requirements set around semantics
support. The platform intends to collect and semalty enhance in an automated manner to
the extent possible, information concerning théedént entities residing in the system which

"HSS % & !y)

external developers and end-users can make us@é@fautomatic process will be accompanied
by an easy to follow process for external entitteadd semantic information that will make the
system as a whole more usable. The semantics iafmmwill be used by the helper
components of discovery, composition and recomménda

Security and privacy related issues appear prortiinas potential sources of worry whenever
Internet of Services (l10S) based on I0T relatetinetogies are discussed. We intend to take a
"security by design" approach rather than an dfterfact approach and have security related
aspects interleaved within the different componémteach a secure and privacy preserving
platform. Security aspects will take effect frone tevelopers portal, while a developer has
created a new service, it will be passed throughdéployment phase in which static security
analysis of the deployed entity will be performadd all the way to be engrained within the
run-time for monitoring the flow of data and infaation with their respective policies.

Since the number of smart objects connected tinteenet is growing very rapidly, scalability
of the IoT platform is critically important for threalization of the potential of loT based
services. Prime examples to the realization of dggiirement in the COMPOSE architecture
can be found in the run-time which is realized asistomized PaasS infrastructure, as well as a
highly scalable communication infrastructure toreect and provide services to different
entities running within the platform, along witlsealable data management component.

A related requirement is to support heterogeneaitguch a diverse area (can be in terms of
communication protocols or API). We designed afptat to support access to heterogeneous
objects, by developing intermediate interfaced@ daodels / protocols that can be mapped to
individual use cases, and a related effort is thekwn standardization in order to ease this
stumbling block from reducing the speed of innawatfin this field.

A comprehensive description of the COMPOSE requér@sican be found in deliverable
D1.1.1 entitled "COMPOSE requirements”.

Table 2: Requirements - Architecture mapping

Requirement Respective architectural element
Consumability Developers' portal

Semantic support Service Registry

Scalability Run-time; communication; data managemen
Heterogeneity Standardisation; layering; semarngpert
Data processing / management Data repository;sgr@aocessing

Security Security components

Monitoring Run-time; communication support

Reliability Run-time; communication support

"HSS % & !y)

2 Architecture High level View

At the heart of the COMPOSE vision lies the exiseeaf plentiful smart objects, which are
real-world internet connected physical objects Wwhian provide information on their
environment or act to change that environment. COBP envisions services and applications
to be anchored at these objects which feed théoptatas can be seen in Figure 2, which
represents a bottom up view from the real physicald feeding the platform from the outside,
all the way through internal processing and suppamponents which make it accessible to the
developer and appealing to the end user. Itemaicedan yellow in the figure represent

internal COMPOSE platform components, while ott@nponents represent external entities
interacting with the platform from below (physiadijects from the real world) and from above
(e.g., developers creating COMPOSE based Services).

/ Developper / End-User \\

Applications

Core Platform Services

Discovery / Composition / management

Services

| Registry)4
Digital Resources

Service Objects

Physical External Resources

Smart Objects / OpenData / ...
N -

Figure 2: Architectural high level components

The Smart Objects are highly heterogeneous in tosiputing power, protocols and
communication mechanisms. To abstract all tharbgémeity away we created the concept of a
Service Object, which is an internal digital regrstion of the Smart Object (marked as

Digital Resources in Figure 2). The Service Objexg a standard way in which it
communicates with the Smart Objects on the one,fesdell as a standard way in which
internal COMPOSE components can interact withliege objects can readily take part in the
creation of COMPOSE services and applicationsdtiteon Service Objects are responsible for
the data management part of the system by hansliiegms of data coming from a potentially
very large number of Smart Objects.

"HSS % & !y)

Service Objects can be used as building blocksgate COMPOSE Services. These are created
by locating the Service Object(s) of interest addiag specific business logic to it. A Service
Object can be used as a basis for creating mulfiptgices, each geared towards a different
goal. Similarly a COMPOSE Service can make useufipte Service Objects to fulfil its

needs. Such services can be exposed directly éoneptiplatform users (developers or end-
users), or can be used to create more complex ciitaErvices and applications.

An internal registry holds entities metadata fa tlifferent entities hosted by the platform, such
as Service Objects and Services. Internally itpesented as a multi-level registry, with raw
metadata mostly about Service Objects in the lolessi, and an RDF overlay on top of that
which describes available services while keepingtpos to the Service Object endpoints at the
lower layer.

The platform as a whole provides over-arching fiomztlities that can be used from the outside.
Such functionalities include discovery, which ermabéxternal entities to locate COMPOSE
internal entities to be used as is or combinedngber level entities. In addition, the platform
provides an assisted composition services engihelfpexternal developers combine the base
Service Objects and Services into Composite Sesaod Applications. The platform
management enables users to deploy selected seasiagell as be informed as to the fate and
state of their services.

COMPOSE main stakeholders are comprised of devieddpé also end-users are taken into
consideration. Developers on the one hand arededaas smart object providers that can
register and manage their devices via the platfarrd,on the other hand are regarded as
producers of new services and applications. Batleas will be supported by the platform.

Note that we do distinguish between "real" develspeho create new services and applications
and "light" developers that may be non-technicdhiiduals that buy a Smart Object and wish

to plug the object into the platform in a semi-amébed manner. End-users will be able to
search for the services or applications fulfillihgir needs, and download or connect to the
chosen application.

2.1 COMPOSE entities

2.1.1 Web Objects

The loT is composed of objects, either connectdatiédnternet or not. All of them will hold a
virtual identity in COMPOSE, but they will use difent ways to communicate with the
COMPOSE platform. The group of objects not directiynected to the Internet (e.g. a bottle of
wine with a RFID or NFC tag) will need a proxy &present them in the IoT. There is also a
group of objects which may have network capabdjtkaut limited programmability and support
for advanced network protocols. These devices, asdimple sensors, still will need the use of
proxies to be able to communicate with the COMP@BiEorm. Finally, there is a group of
advanced devices (so-called Smart Objects, sualSasart Phone, tablet, or an Arduino
device) that already hold the capabilities to talkhe COMPOSE platform directly.

Each one of the abovementioned objects (enablédaxibmmunications proxy when needed)
are known as a Web Object in COMPOSE. Web Objeetplaysical objects sitting on the edge
of the COMPOSE platform and capable of keeping Hb&Bed bi-directional communications,
such that the object will be able to both send tathe platform and receive activation requests
and notifications. They will not all support theyeoperations, but a minimum subset will have
to be guaranteed to make them usable in the COMRD:BBrm.

"HSS % & !y) +*

2.1.2 Service Object

Service Objects (digital resources in Figure 2)stamdard internal COMPOSE representations
of Web Objects. COMPOSE specifies an API by whidxpects to communicate with the Web
Objects, in order to obtain data from them, ordsgé within them (for more detailed
information see D2.1.1 — " Design of the objectuafization specification"). That API can be
embedded directly in the Objects or can be provitied mediating proxy that will connect the
Obijects to their corresponding COMPOSE Service @jd his entity serves mainly for data
management purposes and has a well defined anetickd2l.

A Service Object exhibits a standard API also maély towards the rest of the components
within the COMPOSE platform. That API is neededider to streamline and standardise
internal access to Service Objects, which cannm tepresent a variety of very different Web
Objects providing very different capabilities.

Furthermore, in order for the Service Object t@ahesable component within the platform, upon
creation it is enhanced by semantic metadata astdlied in a registry. The enriched description
can be used later by COMPOSE discovery mechanissispply external users with reference
to the Service Object based on its characterisdind,functional as well as non-functional
aspects.

Service Objects can be combined with other Se@igjects to create a Composite Service
Object or can be combined into Services, possilitlly added developer logic centred on data
manipulations and transformations. Throughout deisument we will use the terms Service
Objects to refer to Service Objects that do ndtifiéd the category of Composite Service
Objects.

COMPOSE Service Objects Infrastructure

Data Repository and Registry

m

Service Objects

Service Objects API

Yeb Objects

Proxies Other
Smart COMPOSE
Objects Components
m

Figure 3: Service Object Stack

"HSS % & 'y) 5*

2.1.3 Services

COMPOSE Services are built by external developsirspthe COMPOSE platform IDE and
SDK. A typical creation process will involve thevadoper invoking the platform provided
discovery services to locate the Service Objedf(sleed. Once the desired objects are located,
they are inserted into the service being createtevaldding service specific user defined
business logic to it, using the supplied IDE. Thedoiced service can in turn be provided back
to the COMPOSE platform to be deployed and runiwiith

COMPOSE Services manifest the importance of theartand community effect. The more
such services exist and are used, the more thgyrane to be re-used and thus made
successful. That is the basic rationale behincetarg this platform mainly for developers and
investing in an attempt to foster a developers'roomity around the created platform. Such a
community may include individual software vendossagll as SMEs and individual
entrepreneurs.

2.1.4 Compositions

Both entities described above, namely Service @bgnd Services may serve as building
blocks for creating new COMPOSE entities, the coseposervices family. Such compositions
come in two flavours, a composed Service Objectaandmposed Service.

A composite Service Object is a data service aggeggtion mechanism, which relies on the
data processing and management back-end compangrvide complex computations
resulting from subscriptions to different Servickj€xts as data sources. This construct can
support pseudo-real time data stream transformgtmmbined with queries concerning
historical data. Data analytics primitives may bevirled as well. The end result of such a
composite Service Object is inserted into the COBE®@egistry along with its description and
may be used by higher level constructs as yet anéihd of Service Object building block.
Just like a Service Object, this entity serves igdor data management purposes and has a
well defined and closed API.

A composite service, on the other hand, contais#nless logic, provided by a developer, and
may combine data stemming from Service Objectd) eapabilities provided by various
COMPOSE services. The end result, once againpeilhserted into the COMPOSE registry
and will be available as yet another kind of COMEG®8rvice.

2.1.5 Applications

Applications are higher-level constructs that arétfaround COMPOSE entities such as
Service Objects, services, and compositions thefgudlications in general reside, are made
accessible, and hosted outside the COMPOSE platfgevertheless, it may be possible for the
application metadata to be stored in the COMPO&Egn registry, which holds descriptions
of COMPOSE components to enable discovery. Morederay be possible for such
applications to be hosted by the COMPOSE platfarmtime. These applications will
communicate with services running within the platipand can for example, provide enhanced
GUIs to internal COMPOSE services.

Developers can use the COMPOSE SDK and API fodimgltheir own applications for
various platforms, including mobile platforms. Aaltions will be developed to add logic and
enhance capabilities provided by COMPOSE serviesyell as for presenting data feeds
which are produced by COMPOSE resources.

"HSS % & !y)

Applications are intended for external users matalgrovide User Interfaces and enhanced
interactions with external users. The applicati@mesent the end of the line as far as
COMPOSE is concerned, thus one cannot build omtdpas they are not made to be
composable but rather to be consumed. It can beedas if COMPOSE Services are the
sources of data and information and the applicatare the sink which obtains the data and may
present or make use of it in any other mannereis &

2.2 Platform Internal Components

2.2.1 Run-time environment

The COMPOSE platform run-time will host all entifieeeded for the complete operation of the
platform, such as Service Objects and Services;iwhill be executed within the supplied run-
time environment. The yellow coloured portions witRigure 2 represent the run-time's sphere
of responsibility. In addition it shall host alleiplatform supplied middleware services such as
the discovery, recommendation, communication, anditaring engines. Hosting these entities
is comprised also of enabling the creation, absmmpaind storage of data and metadata created
and associated with various kinds of entities.

The COMPOSE platform run-time will consist of a Gjpdly customized PaaS geared towards
operating above the lIoT. Thus, the daily operatisiisbe supported by a cloud environment
automating many of the tasks of running such diatin a scalable and secure manner. This
0T PaaS will coordinate and provide interfaces laodks to additional system components,
such as the developers' portal, to complete thie ©faiding the users with fulfilling their
tasks.

2.2.2 Service deployment and interaction with Servi ce Objects

Once a service has been created using the SDKagrabitities exposed by the platform such as
discovery, it is ready to be deployed into thefplaw. The SDK will provide an easy to use
mechanism for deploying the created service or@ad@X®MPOSE platform. That should be a
one push button that will carry all the informatio@eded in order to deploy, instantiate, run,
and manage the created service. The package wiistnot only of the executable itself but
also a configuration mechanism that will enabletiaiing some aspects of the services and
provide information as to which COMPOSE providedtfarm services should be made
available to the newly created Service.

Once the service is introduced to the platformamalysis of requirements for platform
middleware services will be carried out and therappate middleware services will either be
instantiated or existing ones will be bound tortk® service being deployed. At that stage the
service itself will be instantiated on one of thatform VMs, will be bound to its middleware
services, and the platform management will be nzakre of the new service being run at a
specific location. Thus the COMPOSE platform withke the service accessible to the external
world, namely to the potential end-users of theiseror the developers.

If the service needs to access data or operatimvided by Service Objects it will do so via the
Service Objects web server, using the Service @bj&el, rather than get direct access to that
information. The internal data repository is haddi@d accessed exclusively by the data
management component which provides the neededalather components, based on security
properties, without exposing the entire data mamege infrastructure to the possible

"HSS % & !y)

manipulation by externally written and provided @onents. In addition uniformity and
interoperability are assured as all internal datbbe accessed in a unified manner.

Composite services will be handled by a workflokelengine that will control the correct order
of execution of different components of the commservice. Lifecycle management and
monitoring services will be provided as well, silcht the management module will be made
aware of the current state of the running senaoe, all platform components. Monitoring
capabilities will be provided as a part of the cammisation back-end and will be fed into the
management module. Lifecycle management will bigaiieid by the deployment component and
will be followed and enforced by the COMPOSE sezwiontroller component.

2.2.3 Developer Portal

The COMPOSE developer portal contains basic compgsrseich as a Software Development
Kit (SDK), an Integrated Development EnvironmemE), a Graphical User Interface (GUI)
and a meta marketplace. All the components willjpl® libraries connecting to the COMPOSE
run-time, with the aim to expose and enable Sesvécel Service Objects for providers and
developers.

The developer will have three ways to access theldper portal after successfully
authenticating himself as an authorized developee. core of the developer portal is a RESTful
Application Programming Interface (API) that prossdmost of the functionality of the portal.
The developer may access this API directly by amg@mamming mechanism that is capable of
issuing HTTP requests. In addition to that, the nsay also access the API through a SDK,
which is basically a language-native wrapper toARg implemented in a multitude of popular
programming languages. The third way of access$iag\PI is through a GUI that sits on top of
it.

This GUI provides a documentation section, as @&k graphical management interface for
Service Objects, where providers, as a special@fagevelopers, can perform create, delete,
update and delete (CRUD) operations on their Se®iojects and manage complex ACL
mechanisms. This includes also mechanisms fortragan and management of Service
Objects with an assisted GUI based on workflow psges.

A major part of the developers section is the IdBich allows for wizard-like drag and drop
composition of new composite Services and Comp@&@gteice Objects and gives the developer
access to smart service discovery mechanisms. lafipehe discovery mechanism is supported
by recommendation services of the COMPOSE platfdfew Services composed with this IDE
can be enriched with meta information and be dieetdeployed to the COMPOSE platform.

Developers can utilize Service Objects, Serviced,@mpositions thereof to create new
applications. It does not matter whether the appta addresses a certain platform or device.
After extending the applications with COMPOSE segsgithese applications can be registered
in the marketplace. COMPOSE marketplace is not ddara target platform such as Android,
iOS or Web. Furthermore the marketplace keepsliegeil COMPOSE-enabled applications
for the end-user.

"HSS % & !y)

2.2.4 Registry

The COMPOSE registry will hold a descriptive anthiled metadata of COMPOSE Service
Objects, Services as well as other publicly avélaervices and APIs that have been integrated
with the platform such that they can be found gds#l developers and end-users. Entities which
get registered with the platform will have theimstically enhanced metadata stored within
the registry. Semantic description of entitiesieswed as an important aspect providing the
basis for adequately discovering, recommendingcamdgposing the many services available to
the platform. Service Objects along with their data held within the Service Objects
repository. The description of these entities #weesl and processed by the COMPOSE registry
(as can be seen in Figure 4). The registry is caepat its base from an RDF store, providing
the backbone for higher level discovery capabditieat can process information stored by the
RDF data store, pose semantic graph queriesdadtpost process the results in a meaningful
way for the developer or end-user. Thus, in COMP@3minology there is a registry which is
the entity that holds metadata and enables sogétistl queries on that metadata, and on the
other hand there is a data repository which isstadjto store and process actual data.

Figure 4: COMPOSE registry

The COMPOSE registry, depicted in figure 4 as #graantic map, holds metadata and
description of all entities, as well as pointershie Service Objects registry and potentially other
external resources. The access to the registigvsrged by the security and privacy policies
defined for the platform and for individual entgieesiding therein.

The most prominent capability that is based orrélgestry is the discovery service. The
discovery service enables the easy and efficiexttion of internal COMPOSE entities by an
external user, by filtering services in terms @ flnctionality they provide or their data

"HSS % & 'y) 1 *

processing characteristics for example. Built gndbthe discovery service is a composition
service, which uses the underlying discovery sertaclocate potential base services that can be
composed in order to obtain the functionality sdughthe external user. In addition a
recommendation service will be constructed utitizihe discovery service.

2.2.5 Security Enforcement

The security architecture of COMPOSE is based ouoritg metadata stored together with the
entities they refer to. Metadata captures secputicies of users specifying the privacy level
the system must maintain for them. Service-centétadata also allows developers and
providers to specify the use of the services oriserobjects. Finally, it helps to efficiently

build secure services and service compositionsg gimvenance information for data generated
and processed in COMPOSE, and to store reputatformation about users, service objects,
and services.

Enforcement points in data, service managementjratice communication fabric enforce
access to data, services, or other resources basgetisions of the policy decision point
(PDP).

The latter determines the overall security statthefsystem, its users, and services by querying,
collecting, and evaluating relevant meta-informatd the system and by retrieving relevant
information from the metadata stores. Various canepds in the PDP also allow considering
trust and reputation, provenance information, @r usformation (such as privilege

assignments) while determining policy decisions.

The PDP also supports runtime monitors to detedtfpravent illegal flows — as specified by the
user or service object provider — during the exeoudf user-provided services. Finally, the
PDP guides the security analysis and instrumemtamponents in COMPOSE whose task is
the identification of potentially malicious flows services or service composition and their
prevention or mitigation by software reconfiguratiar instrumentation.

All security components rely on an identity managabsystem. It associates COMPOSE
entities with identifiers and stores and distrilsiappropriate security information to also
provide an authentication service.

2.3 Putting it all together — the short version

Thedevelopers' portais the main component which external developecsenter. On the one
hand this portal enables the developer to createseevices. That task is aided bgevice
discoverycomponent which in turn relies orservices registryThe developer can make use as
well of aservice recommendatiaapability and amssisted service compositioapability

which both in turn rely on the services discovammnponent. Once a new service has been
designed and created by the developer he can deépayewly created service to the platform
run-time The process of deployment will trigg&tatic securitychecks, which be enhanced by
dynamic securityaspects at run-time. In addition the deploymeiisphwill insert the newly
created service to ttservices registrgo that it shall be discoverable in the futurec®thne
run-timedeploys the service it shall host, manage theyifke and monitor the running service,
while providing access to it to external end-usArsadditional function facilitated by the
developers' portails that of web objects registration. Once thalose the COMPOSHata
managementomponent comes into play which serves as thd pbientry for all related data,
providing advanced processing capabilities, andigiog interfaces to access that data. That

"HSS % & 'y) 7+

data in turn serves as a basis for the useful operaf the COMPOSE entities, namely the
Service ObjectsServicescompositionghereof, andpplications

2.4 Relationship with IoT-A

The Internet of Things Architecture (I0T-A) is arBpean integrated project tackling the
definition of a reference Architecture model foe tinternet of Things. The project started in
October 2010 and will end in November 2013.

The main motivation behind the I0T-A project is taek of a common understanding of what
the Internet of Things is, especially from an amsttural perspective. Despite the great progress
in the availability of devices and systems in fiefd, not so much progress has been made in
the definition of common reference models with eg$fo interfaces, communication protocols,
etc. The result is an extremely fragmented areid, avstrong limitation on the impact of 10T in
the every-day life services.

In order to deal with that fragmentation, the ajgtoof the 10T-A is to proposeReference
Architecture (RA) *, which should represent the basis for designirygcamcrete Architecture,
e.g., specific implementations to be used in apfibo scenarios. This is combined with a
Reference Mode] which is responsible for defining a common untigrding of the loT
domain. The combination of the two is calkethitectural Reference Model (ARM), and
represents the main objective and ambition of ¢ffeA project.

In the following we present how the loT-A Architaral Reference Model has been considered
in the design of COMPOSE. We refer the reader tpefdix 1 for a broader overview of both
0T-A Architecture and mapping to the COMPOSE systiesign.

loT-A Reference Architecture Model in COMPOSE

The IoT-A Architecture Reference Model has beerwasea reference and inspiration for the
design of the COMPOSE system and architecture, inddrms of functional components, as

well as best practices. We report below a highllmagpping of the COMPOSE architecture to
the 10T-A ARM, according to the various views praet.

Reference Model Similarly to I0T-A, the reference scenario isttbha user interacting with a
Web Object Physical Entity mediated trough an application (e.g., web-basehile, etc.).
Physical Entities are accessed via their digitaihterparts Service Objectgiftual Entitieg. In
accordance to the 10T-A ARM, COMPOSE clearly digtirshes its design between (i) the
Domain Model, which characterizes the main dom&ments of the architecture (e.g., Web
Objects, Service Objects, Services and Applicajidii} the Information Model, which
specifies the data models, including semantic gasmn, of each constituting element and (jii)
the Functional Model, which groups various funcélities required by the platform including,
e.g., service discovery, assisted service compositsecurity, etc.

Table 3: 10T-A COMPOSE comparison

||# n

"HSS % & !y)

DIGN (*&)

Similarly to 10T-A, three basic types of Web Obgeare considered in COMPOSE, Sensors,
Tags and Actuators, where each one of them canindaeyms of sensing, computation and
communication capabilities.

In particular, the COMPOSE Domain model detailsw@gous entities involved in a generic
loT-based application delivered over the COMPOSEKeplace. This architectural layering
defines all the main components of the COMPOSH@lat, and their interactions, independent
of any specific implementation or technology.

The Information model in COMPOSE defines how Welpe®ls are represented and modelled
in COMPOSE. This includes the data structureswulihtbe managed by COMPOSE, and the
information flows among components. Furthermordefines the semantic annotation required
for facilitating the service discovery and recomihegion.

The Functional Model in COMPOSE details the funaiities, and their grouping, that will be
provided by the platform in order to ensure a prdpnctioning of the system, as well as the
related services.

IoT-A Reference Architecture: COMPOSE high-level architecture is fully aligneih the
I0T-A reference architecture. In the following talsVe report the mapping of COMPOSE
architectural components into the IoT-A RA functibnomponents.

Table 4: Mapping l1oT-A functional architecture to COMPOSE architecture

(" ((! * 1109
())?)! '@(&s@ @
$A@ ') """ @) 3

()($

2 1) @ ()@
a

% . ' ()(
("

) B (" @ ‘ @
O @

&

% . >!) (6 ')

!)& @; &) ()(@
)& @ @.!' C

"HSS % & !y)

) (# (@D ()(@ !
@ $

When integrating the functional view of the IoT-£hitecture with the most relevant non-
functional requirements, concerning the Evolutiod &teroperability perspectives, also in this
case we see that COMPOSE architecture and desjgirements are fully aligned.

For a more detailed analysis please refer to se&tid\ppendix 1 — lI0T-A.

3 COMPOSE from Stakeholders perspective

The main or characteristic flows are presentedte@icthe different roles that exist around the
COMPOSE platform. On the one hand there's a platfmovider which is in charge of
deploying and hosting the COMPOSE platform (SubtiSed.1) and its daily operations, such
as fostering the automatic deployment and manageofieservices introduced into the system,
as can be seen in Sub-Section 2.2.2.

A separate role is that of a Web Object providéricv can be a user owning the object or the
company producing the object, which they want tekgosed to the COMPOSE platform to be
used, operated on, or exposed by COMPOSE servicgasrely expose their data via the
platform. The flow of introducing an object to thkatform and the manner in which it shall be
handled internally is further presented in Sub-i®acB.2.

Developers acting as service or application pragideteract with the system via the
developers' portal as detailed in Sub-SectionREr&lly, end-users locate and make use of
COMPOSE provided Services and applications, asribdr detailed in sub-section 3.4.

"HSS % & !y)

Figure 5: Main component flows

3.1 Platform Provider: Out of the box deployment

The COMPOSE platform consists of a specificalljor&d customization of a cloud
environment, namely Cloud Foundry [2], for the ®rld COMPOSE relies on. Along with
the platform, several COMPOSE related middlewareices are deployed and made accessible
to the platform users, while some such servicescabe used only internally by platform
components. Externally accessible functionalit@srégistered and authenticated / authorized
users will include services discovery and deploytnehile internally used functionalities will
include data processing services such as a NoSQdaBchBase [3]), a streams processing
engine, STORM [4] and a Web tier to implement$®evice Objects APIl. A SPARQL [6] end-
point and an RDF graph store will be deployed mafly to be used by the external facing
discovery module. In addition scalable communicatiervices will be made available to
internal components, and some such services, suchtdication, may be available for external
components as well.

COMPOSE developer tools in the form of an SDK &pH will be made available through the
platform. Internally these tools will communicatéwplatform exposed API for their proper
operation. These tools will enable the registratibVeb Objects as well as the discovery of
existing services, creation of new services, coragagrvices and applications. The platform
run-time will support services with logic developeg external developers.

"HSS % & !y) +*

Figure 6: COMPOSE platform run-time support

The platform out of the box is an 10T tailored PatiBs it exhibits a cloud environment to
which developers can deploy the newly created sesvilnternal management of resources
needed to run the platform and the user developgties is performed transparently to the
users / developers by the platform internal cajiads|

The platform will come with readily available ser@s and VMs ready to host the platform
internal services and a separate set of VMs reatig taunched in order to host external
developer services. All these services will be maalesparently available to external entities
regardless of the physical or virtual location theside. Moreover user developed services will
be able to transparently bind to middleware ses/fm®vided by COMPOSE for their own use,
such as a DB, NoSQL engine, etc.

3.2 Web Objects Provider: registration and Service Object
management

Figure 7 summarizes the main components involveterService Object flow. Web Objects
(HTTP-enabled objects at least in the initial phasa reference web-based implementation,
either through a proxy or using COMPOSE librariatvely) may be manually registered with
the platform through the developers' portal or salfiregister using the Service Object API. At
registration time, object metadata needs to beigedy which can be done either manually or
automatically when possible. Enhanced metadatasntedok taken care of by the Object
Provider or integrator only once and then a unigeatifier needs to be assigned to this object

"HSS % & 'y) 5*

for future uses. External facing components of C@3E will provide assistance for bringing
the information online as well as with communicgtinternally with the objects registry via its

Service Objects API

Management API Data API

a -~

weans
0w

Buissasoid

Data Repository

Figure 7: Service Objects flow

Once the Web Object has been registered and itsspamding Service Object description has
been created and successfully inserted into thistregthe object is ready to be found and
becomes operational. The Service Object implemientatill be available via a REST API that
is handled by a generic web server handling alh Service Objects. Specific responses for
specific objects will be provided by the web servased on the specific registry entry. The
Service Object is the only one that can accessttirthe data and metadata stored on behalf of
the corresponding Web Object. Other services wistorget hold of this data will access it via
the Service Object mechanism described above.

3.3 Developer: Services and Applications Creation

The service creation process aims at making it Basyevelopers to create COMPOSE services
and applications based on COMPOSE Services anic8dDbjects. To that end the external
developer will be provided with an IDE, SDK, and/eb based GUI to help him during the
process. Obviously the IDE supports also a GUtfeating composite services via a drag and
drop editor. But in this context the web-based @tdvides features for registration, search and
discovery of Service Objects and services. Theldpee can create his new value added
service using existing Service Objects, serviced,@ntent providing channels, such as Open
Data. In the process he can create new compositeess

Thus, the first task that a typical developer wiecute will consist of searching for available
adequate building blocks. Thus, the GUI will pravithe developer with easy to use service

"HSS % & !y)

discovery mechanisms. The user will be able talsitiugh existing services based on his
specific criteria.

Once the base building blocks are identified, ther @an drag them to his COMPOSE enabled
IDE where he can add appropriate logic. Moreover service editor will enable and assist in
the creation of composite services based on tivécesrlocated at the previous step. While in
the process, the user will be aided by a recomntimdsystem that will assist with the best
options for services to use and to compose int@lhamposite services.

Once a service is successfully created it is regstin the corresponding registry, along with
metadata that includes its description, and mayustéed to the COMPOSE platform for
deployment and execution.

The composite counter-parts of COMPOSE ServicesSamdice Objects will be assisted by the
developer portal as well. The provided IDE and Gadth the help of the SDK will enable the
developer to formulate the rules for the creatiba composite Service Object in an easy
manner. The Service Objects of interest will bespnted to the user in a graphical manner and
he will be able to connect the different Servicgddts using pre-defined data manipulation
primitives. Once the new topology of the correspog@&ervice Object is finalized by the
developer it can be ingested into the system bylibk of a button.

Similarly, the creation of composite Services Wl made easy by the assisted composition
engine component, exposed to the developer viddkielopers' portal. The developer will be
able to identify the services and Service Objetinterest, and be able to connect them in a
graphical manner. In addition, specific busineggd@onstructs may be inserted by the
developer as needed via the supplied IDE.

Finally a created and registered service can besexpvia a RESTful API with the idea to

enable this service for application developers.dl@yers can search for services and can use
the provided API for their own application. Thug,the one hand developers have access to the
COMPOSE SDK as a wrapper for basic COMPOSE feasurels as discovery,
recommendations, registration, communication andagement of service objects. On the

other hand the SDK will be extended via composteises and their APIs. Once an application
is extend via a COMPOSE service, the developeregister them at the COMPOSE meta
marketplace. The meta marketplace aggregates MREOSE-enabled applications

independent of platform and device.

3.4 End-user: Interaction with the platform

The end-user portal presents the central inteffacateractions for users who have no deep
technical understanding of software, hardware aidrélationships. It is the public facade for
usable COMPOSE applications and services with alsinmser interface in the form of a Web
application. Rather the end-user portal is a metekatplace which brings together COMPOSE
applications and services from other specialized Yetals and popular marketplaces such as
Google Play Store and Apple iTunes App Store. Tthesmeta marketplace is the central
contact point for loT-related applications using @OMPOSE platform. It provides common
features application discovery, description and moads.

COMPOSE helps end-user to locate their entity edn€OMPOSE application and services
are searchable and categorized in the end-usexdl pBetegories are established based on
common loT topics. Furthermore the end-user psttpports a powerful search function with
auto-completion and suggestions. Applications @ndices have descriptions, images and
properties such as version, release date, auticor, e

"HSS % & !y)

COMPOSE applications can be downloaded for usééend-user. As the end-user portal is a
meta marketplace COMPOSE applications and seraieeBnked to other Web portals and
marketplaces. That means that if an end-user AMA®MPOSE application in the end-user
portal and he clicks on the download button he foitvarded to the corresponding
marketplace. But COMPOSE applications can alsodséeld on the COMPOSE platform and
initiated by the COMPOSE runtime. So applicationd services providers are free in the
decision where to host their applications and sesvi

COMPOSE applications and services which are hasteitie COMPOSE platform will be
initiated by the COMPOSE runtime. COMPOSE applaatiand services are built with Web
technologies and provide basic user interface aed interaction capabilities. By clicking the
download button in the end-user portal the COMP@@ication will be run and connect to
the required COMPOSE services executed within B&E0SE platform runtime.

4 Detailed design

In this section we dive into the components alrgamgented above in a somewhat higher level
and dissect them as to their internal operationenasd interactions with their counter-
components.

As the platform is intended for providing serviedsich are based upon objects in the real
world, naturally the starting point lies within 8eeobjects, which are not a part of the platform,
but rather the interaction with them forms the Isthlayer of the platform. Thus, there is an
ingestion layer, at the entrance to the platfortmictv creates the bi-directional connection
between the objects in the real-world and the COBP@latform.

"HSS % & !y)

Figure 8: Architecture in a single glance

4.1 Functional Abstractions of COMPOSE entities

4.1.1 Service Object

Service Objects represent the meeting point betweephysical and the virtual worlds. On the
one hand a Service Object serves as the ingestiohgf the I0T (in the form of Web Objects)
into the platform, and on the other hand it prosiddacade to the real world for all platform
internal components.

The Service Objects connect to the Web Objectssamedmline the interaction with the physical
objects. Once a specific Web Object is ingestenl tim system it is elicited into a Service
Object by providing an enhanced semantic serviserggion, which will reside in the platform
registry and will enable locating the Web Objectdzhon its advertised characteristics.
Moreover the Service Object serves as the chamaslhich data flows into the platform from
the Web Object, and stored in the platform datasipry. In addition the Service Object serves
as the data-serving entity for other services nupmvithin the platform.

Service Objects are served internally through a RESAPI that is served by an internal web
server. These capabilities will be exposed extbree the COMPOSE developer API.
Internally, upon the reception of a request, thevie Object ID is used to index the objects
metadata store, where the respective informatiarbearetrieved. The COMPOSE developer
API will include a registration part and a dataatetl portion which will be exposed and used by

"HSS % & 'y) 1 *

services. The developer API will serve as an easyehsume wrapper around the RESTful API
used internally.

The COMPOSE platform will provide a Service Obje&R to be used for all activities related
to the interaction of Service Objects (and theirrger-parts, the Web Objects). The API will be
based on REST technologies: namely, HTTP as thegmat protocol, and JSON data structures
as the data model. The Service Objects API wilflyuboth the Service Object interaction and
the Lifecycle management, providing the controllkoecessary to allow the creation and
management of Service Objects. Based on the spédtfi invoked the following HTTP
operations can be accepted: PUT, POST, GET, anEDEL

Each Service Object will be associated with a uailfu (the Service Object ID) at creation
time, and this ID will be used to identify the See/Object and to construct the HTTP URIs
necessary to interact with the Service Object. SURhwill be known as the Service Object
endpoint.

Each Web Object will have to know the ID of its oter-part Service Object to interact with the
platform. COMPOSE Services and Applications, arfoexternal entities that need to interact
with Service Objects will have to know the Sen@igject ID also. Furthermore, the Service
Object ID will be searchable and discoverable.

Service Objects can be combined with other Se@igjects to create a Composite Service
Object, which in fact is an abstraction representiifferent data aggregation mechanisms. The
same API will be used to interact with plain Seevigbjects and Composite Service Objects.
The platform will determine the type of Service @tijbased on the metadata associated to its
ID in the Service Object registry.

As Service Objects will also offer means to actuatehe Web Objects, bi-directional channels
of communication will be needed between Servicee€sjand Web Objects, supporting both
the traditional “pull communication model” and tim@re challenging “push communication
model”. The former is usually initiated by the W@bject-only, and is not useful for actuations
since they must be initiated by the platform assponse to a placed request. To address this
problem, the push model is required (being thdqliat who initiates the actuation operation on
the Web Object). The push model is usually challengvhen the Web Object (being a proxy or
an Internet-enabled Smart Object) sits behindeavéil. To overcome the limitations posed by
Internet firewalls, the COMPOSE platform will besalreachable using the WebSockets
technology.

To summarize, the Service Objects API will offe following services:

Creation and destruction of Service Objects: A Ber®@bject will be represented
internally as a data structure containing informmatnd links to other components as
needed. The API will provide means to add a Ser@bgect providing the details
associated to it, and to destroy a Service Objberwvthe corresponding physical object
is no longer associated with the COMPOSE platform.

Pushing data to the platform: Web Object sendimg@eupdates to the platform
through the corresponding Service Object endpoint.

Getting data from the platform: Given a Serviced&ab]D, the platform will provide
limited access to the data associated with theng8ezvice Object and stored in the
COMPOSE data repository. The access will be limiteiggrms of “who” can access the
data, and the API will cooperate with the secuaitgl privacy module to determine the
restrictions to apply.

Subscribing to updates: COMPOSE Services and Wsbebaxternal services (e.qg.
Facebook, Twitter...) will be able to subscribe tov&se Object updates. Every time a

"HSS % & 'y) 7+

Service Object gets new data from the corresporidimgical object, the subscribers
will see the new data being forwarded to their fimea in a user-specified format.

Running data queries: It may be useful to somewoess of data associated to Service
Objects to perform queries on the stored data.prétéorm will provide means to create
such queries and make them accessible throughRlhe A

Obiject actuation: The Web Objects will not only be the source dbdaaching the platform,
but they will also be the endpoint of certain atitraactions. For that purpose the Service
Object API will also provide means for initiatingtaation actions on the Web Objects, with
any restrictions determined by the security andgay module.

4.1.2 Services

Services are one of the main artefacts of the COSP@latform. For that purpose we aim for
the entire operation around services to be asgssrds possible for the developers as well as
for the end-users. Services represent the spetdfcforward in terms of functionality that an
end-user can enjoy based on the multitude of soigetts that are out there.

Description

In order to make services searchable we aim fensastically rich description of each service.
Such a service can in turn be advertised, so ththtdnd users and developers can (re) use
them, and/or combine them for their own needs.

The service description is divided into 4 main panamely, the functional description (i.e., the
operations and functionality provided), non-funo@ibproperties (e.g., security level, response
time, etc), domain specific metadata (i.e., theas#io type of data consumed and produced by
the service), and grounding information (i.e., téchl information on how to invoke the
service).

In a nutshell we define Services as executabléientivhich have a number of Operations.
Operations in turn have input, output and defawdsbageContent descriptions. These capture
the entire messages that these operations exchdregethey are invoked. In turn,
MessageContent may be composed of mandatory angptMessageParts. These parts
essentially provide a more fine grained accounhefmessage formats supported by the
service. Having a more detailed decomposition efrifessages enables both software and users
to better know that parts of information conveygdhe messages and distinguish those that are
optional from those that are mandatory. On theshaisihis detailed information, for instance,
automated dataflow may be derived in order to gegeegxecutable service compositions.

The concrete domain-specific semantics of eachaxd elements for a given service can be
expressed in terms of any ontology or shared RDfabulary, thus allowing the use of a
general purpose representation and the corresppnuichinery across heterogeneous services
from diverse domains. The service operations gasmn will consist of a set of operation with
their corresponding input and output parameters.ddmain specific metadata will add
semantics such as functional and non-functionakdiaation. Finally, the grounding

information is supplied in order to map services ithe real-world.

Design

Service design is to be made accessible to devasloean IDE, SDK, and a GUI front-end.
The service design functions will enable the deyetdo easily locate interesting existing
Service Objects or services, and tailor specifigd@round it. In addition, the design front-end
will enable the easy creation of composite servioas existing ones, while once again adding
specific logic to the composition.

"HSS % & !y)

Service recommendation services will be made availeo choose the best suitable entity based
on developer needs as well as proposed composiimhtecommendation based on platform
knowledge, such as security related aspects. ®eteisign is mainly supported by the IDE. The
IDE brings together functions for creating compesiervices. Service Objects and existing
services can be found with discovery and recomntendéeatures. Identified services and
Service Objects can be arranged by drag and dragti€unality with a visual editor. A workflow
engine in the background validates and controlexaeution of the final composite service.
Finally, the IDE provides deployment assistanceliercomposition.

Deployment, execution, and lifecycle management

Once a service has been successfully created sted tey the developer it needs to be validated
and deployed onto the platform. The deploymentgssavill take all the necessary care of the
service from the moment it has been successfullgted, and bring it into a state in which it

can be pushed and deployed into the platform ckxadution environment. That process entails
gathering all necessary information concerningctbee produced and the accompanying
configuration parameters and bundle them in a Wwaywill be digestible by the cloud
deployment infrastructure, and will enable theHarttask of monitoring and controlling the
lifecycle of the deployed service.

Figure 9: Lifecycle of a service

The Lifecycle stages are based and inspired bppen Services for Lifecycle Collaboration
(OSLC), which is based in turn on the W3C (Worlddé&/Web Consortium) Linked Data. The
detailed information about Lifecycle stages carfidumd in the deliverable D3.2.1.1 — "Design
of the Interfaces for service execution ".

"HSS % & !y)

Services Discovery

Service descriptions, along with all the associatethdata will be
stored in a scalable RDF store that will be exp@sed SPARQL
end-point. The RDF store will host all entitiestthave semantic
information attached to them such that they carebvéeved at a
later time via graph queries.

The underlying technology to be used is Apache J&havhich is a
Java framework for building Semantic Web appliaagicenabling
the creation, storing and processing of RDF trglderiving
additional knowledge by means of automated reagonin
mechanisms, and providing querying support thrdsBARQL.

The anticipated scale, mainly in terms of amourgudries to be
processed for particular operations, leads usdaésign of a highly
scalable solution in which queries may be partétbamong
different nodes. In addition data updates may bttiomed as well.
It is envisioned that the RDF store will be repiezhand thus made
highly available and contribute to the entire syssefault tolerance.
The replication layer will be flexible in the amdwf supported
replicas and will operate in an active-active fashiQueries may be
served by any of the available replicas concuryepthtentially the
same may hold true also for data updates.

On top of the data layer, the discovery engine ipies/a storage and
management layer that is in charge of (i) suppgréidvanced and
efficient access to the data layer, (ii) supportimgimport of service

annotations in a variety of formalisms, and (iiigfprocessing Figure 10:
services and documents for the indexing of services Services
management

Finally, the third layer is in charge of providiagvanced discovery
and analysis functionality exploiting the data higydthe registry.
This includes notably algorithms exploiting the setic descriptions of services functionality
and their interfaces. Discovery results can ultgribe combined (e.g., for creating complex
queries) as well as filtered and ranked taking adocount non-functional descriptions.

stack

Composition (OU)

The service composition will be performed
through an engine that will have two components,
namely, a heuristic graph search engine and a
trust and security filter. Through the discovery
engine and given the user’s request, the first
component will select a set of candidate services
that could potentially be part of compositions that
would provide a required functionality. On the
basis of this filtered subset of services, the
module will construct a set of candidate
workflows whereby each one represents a
composition of services that implements the) o)
required functionality. The search engine will Figure 11: Composition engine
perform graph search algorithms on workflows iarchitecture

order to construct rapid service compositions.

"HSS % & !y)

The trust and security filter will take the reswdfghe first component as input. Then, the
second module will filter and rank candidate waolfs according to security and trust levels of
the composed services. Security and trust assetsmidirbe performed by the security, trust
and provenance component developed in WP5.

Recommendation

The service recommendation engine will be implemetihirough a system composed of two
main modules: a content-based filter and a coliaipe filter. The content-based filter will find
services that are similar to an ideal one or astiexj one that is specified by a user. This first
filter will exploit four external components:

the discovery engine, for searching services thatige similar functionalities;
the monitoring platform, for selecting servicestthave similar or better performance;
the security, trust and provenance platform, terfitrustworthy services;

a Web crawler that collects and derives whenevssipte additional information, such
as popularity and geographic coverage of servioesnk services according to user
context and needs.

On the other hand, the collaborative filter willes# services according to service usage
provided by the data provenance platform.

The implementation of the service recommender vglmainly focused on the development of
the content-based filtering until the final stagéshe COMPOSE project which is when usage
information will also be available.

Figure 12: Service recommender architecture

4.1.3 Applications

Applications are higher level constructs with deypelr supplied logic and an external GUI that
take as input services running within the COMPO&E@m and generate an external
application that can be downloaded and run outsidescope of the COMPOSE platform.

The applications themselves along with their metadaay be stored in the internal COMPOSE
registry, and thus made searchable for interestdelisers. Some aspects of the applications
may be run on an external device, such as a laptagSmartphone, and will communicate with
the internal COMPOSE services running within theMiRDSE platform via the COMPOSE
supplied web based API and endpoint. Thus, devedagre free to use COMPOSE services for
their own target platform which follows the trenideocross-platform approach.

Furthermore COMPOSE supports a meta marketplagarémnoting COMPOSE applications.
These applications are listed in the marketpla¢k déscription and link to the initial
deployment. The meta marketplace acts as an adgresjjace COMPOSE application may be
distributed across various distribution channels.

"HSS % & !y) +*

4.2 Core platform components

4.2.1 Security

This section sketches the current status of therggarchitecture which will be subject to
refinement until the end of the project. Furthetade about this status and its implementation
can be found in deliverable D5.1.1 "Security reeuoients and architecture for COMPOSE".

The following text mostly refers to Figure 13.llustrates the placement of the main entities of
the security architecture. This figure is basedrigure 5 which gives a high-level introduction
to the flow between the main components.

Client

— Update/

! r|C)

(pata) (]
- I — |
? __‘ > F(-)*E

(i) <«—{Comm. Fabrit
1 é

Figure 13: Security Architecture Overview

The identity management (IDM) component associ@@MPOSE entities with a virtual
identity. In this way, it allows for authorizatioaythentication, and accounting. As a
consequence the IDM component also needs to privedappropriate information to the
security components taking security critical dewisifor principals, i.e. monitors and policy
enforcement points.

The IDM component distinguishes between two tyggwiocipals: internal and external.
Internal principals comprise any type of user, merobject, service, and application. They are
managed using the credential based User Accounfatitentication (UAA) system. It
provides a flexible user and component managemehhas already found its integration in
Cloud Foundry, which forms the basis for the COMEQ@®ud based run-time.

"HSS % & 'y) 5*

External entities and the communication betweemilgich as interactions with WebObjects,
SmartObjects, WebApps, or WebServices, require reopéisticated mechanisms. Their
security exposure is higher as they “live” outdide COMPOSE platform. Thus, establishing a
secure channel with such entities is impossiblaavit appropriate security mechanisms in
place. For this purpose, the IDM component wilbdigst a Certification Authority (CA) which
can issue certificates for such entities. In thiyWCOMPOSE can establish secure channels
with the ability to revoke specific trust relatidms and avoiding the classical problems of key
distribution schemes.

Of course, Smart Objects may not be able to ruptographically sophisticated protocols
required for a public key infrastructure. Howevarapplication scenarios where reliable sensor
information, origin, etc. are essential, COMPOSE iy on the use of Web Objects which can
implement and run such protocols.

The security architecture of COMPOSE heavily depasmdmetadata and mainly distinguishes
between policies, provenance information, and it information.

Policies specify the rules according to which COMEE Eentities should be handled, e.g. which
service or user should be able to read a spedaite item, or which developer or user should be
able to run a specific service which consumes filata a service object, etc. Policies are
managed by the system. However, a user can ohiHicient permissions to create or edit
policies, as well. Security policies for data a@rad with the data in the data store. Policies
about the use of services or service objects aredin the service object and service registries
respectively.

In contrast, provenance information is solely gatest by the system. It archives the
information about when, where, who, and how antehtis been used. While we will try to
keep this provenance system as generic as posstderrently only support a data provenance
system. It accumulates information about the ses/generating specific data, the services
consuming it, and possible operations performethizndata, e.g. its combination with other
data or its broadcasting to remote locations oatefdthe COMPOSE system. To also account
for scalability, we will consider descriptive medisms which allow the accumulation of
provenance data on the basis of data sets. Furtiheradditional metadata may describe when
provenance data should be archived. This will allbg/user to control the amount and type of
data collected by COMPOSE and the system can ddahgeoesources used for this purpose.

Reputation information collects feedback aboutdperation and installation of service objects,
services, and applications. It is stored togeth#r its entities in the corresponding service
object and service registries. COMPOSE currentlsduwot archive data reputation. We assume
that reputation information is already containethia provenance information. As soon as the
first prototypes show which type of information daaderived from provenance data, we will
determine whether the additional accumulation piitation information for data would make
sense.

Finally, the service registry also stores secaityiotations about services. These are
specifications which define pre- and post-condgifor services, as well as information about
their internal, abstract data flows. While pre- @ogdt-conditions specify system states which
must hold before execution of a service or which lafter its execution respectively, flow
specifications provide more insights about wherg, ® which resource, input data is flowing,
and how and from where output data is generated.ififormation can be generated by hand
describing critical security services provided l9MPOSE, e.g. the encryption or
authentication of a data stream, it can be geriatesemi-automated processes for APIs, or it
may be generated by the system to save computhtesturces during the analysis of services.

"HSS % & !y)

One central entity in the security architecturthis policy decision point (PDP). This
component supports the enforcement of securitiesliby checking the current state of the
system and determining whether security criticaragions are compliant with its policies.

The PDP is used by many policy enforcement polER) in COMPOSE. The PEPs in the data
and service management use the PDP to decide @utherization of access to data, services,
or applications. Further, the PDP has access ty méormation sources that feed single
decision modules in the PDP component. The follgviypes of modules will be the minimum
number of modules supported by the PDP: a trustgputation, a provenance, a flow control, a
communication, and an Access Control and Accoumtingule. In this way, the PDP can
answer policy decisions of the main enforcememigaind monitors in COMPOSE.

The PEPs in the data and service management n@intyol access to data, service objects,
and services. These management units also updasphopriate information in the registries,
e.g. provenance, reputation, or policies.

A security monitor in the communication fabric aahé all communication between
COMPOSE entities. It can also update the relevaaurity details in the registries.

Finally, very important enforcement points are titnetime monitors which are directly
integrated in the execution environment of COMP@8By instrumentation in the COMPOSE
applications and services themselves. To suppalalsitity and precision during runtime
enforcement, our monitoring will opt for inline egénce monitors and central monitors.
Permanent runtime monitoring will ensure that ditas which cannot be analyzed statically
can be enforced dynamically. All other runtime ntors will be integrated using the security
analysis component which checks service or sepoogpositions before their execution. To
increase efficiency, analysis results for servicass be stored in the service registry. In this way,
services or their combinations can be pre-analgreddmultiple analyses of the same service
can be avoided.

Instrumentation of services and service composstiersupported by default security services
stored in the service registry. They implementdasrcurity primitives and provide an
appropriate specification with feasible securitp@tations. The security analysis component
can use these specifications to patch compositiossrvices not-compliant with the existing
security policies. Such instrumentations can atsproposed to developers through the IDE.
The SDK will use the appropriate interface of thewsity analysis component to make the
results of the analysis accessible to the end-user.

More detailed information on a first draft of thecarity architecture and its impact on the
security requirements identified for COMPOSE arscdibed deliverable D5.1.1 "Security
requirements and architecture for COMPOSE".

4.2.2 Data management

Once the Service Object is active, the REST APltakke care of handling all the operations
related to the Web Objects activities, managemeirss, data processing requests and
subscription dispatching. As it is expected to hatalge volumes of data as well as potentially
load peaks as a result of aggregated traffic flgwiiom a large number of Web Objects, the
REST API will be structured as a multi-tier servi¢ée front-end tier will handle the basic
parsing of REST operations and initiate simple d&dae/retrieve actions (with limited
computational cost) and the back-end will be usgordcess complex tasks, that will be run in
real time but asynchronously using stream procgdsichnologies (in particular, STORM).

"HSS % & !y)

Both Plain and Composite Service Objects can beszed! through the API front-end, but while
sensor updates ingested by Plain Service Objedtswpily little computation and just trigger
subscriptions, Composite Service Objects will uguasult in more complex computations that
will take place in the back-end, usually triggebgdactivities initiated on the Plain or
Composite Service Objects. So, usually, Compostei€ Objects will be subscribed to
different data sources (such as other CompositdcgeDbjects or Plain Service Objects), and
their activity will be triggered by any updatesginated on the Service Objects they are
subscribed to (represented in Figure 14 by theathbhe that forms a loop around the STORM
topology). Plain Service Objects can not be subsdrto any sources, and as such, their activity
can only be initiated as a response to a sensateghgpushed to the COMPOSE platform by a
Web Object.

The front-end of the API will be implemented asemeric Web Server, possibly using an event-
driven architecture in the final implementation eTévent-driven architecture is especially well
suited for implementing REST APIs as they requieing open connections with a large
number of HTTP clients, but at the same time edientds usually performing little activity on
the web tier: parsing REST operations is not algestivity. The task assumed by the front-
end is to check privacy/access/security rulesdwperation with the security component), and
store the raw data for plain Service Objects.

The back-end of the API will be implemented usitajes-of-the-art stream processing
technologies. These technologies allow for thegtest highly concurrent processing
topologies that are used to process incoming chahata on-the-fly. In particular, STORM

has been chosen over other existing technologieh @s Apache S4) because it can guarantee
that any token entering the topology will be pr@sesunless the whole STORM infrastructure
suffers an unrecoverable failure. The task assumgetle back-end is to check for data
subscribers (either internal, which is the caseCfomposite Service Objects, or external such as
public websites), transform data as needed beforeaiding it and trigger all the subscriptions.
For the particular case of Composite Service Objehat perform data aggregation operations,
the STORM runtime will instantiate the necessanyponents to complete the operations and
take the data through the processing pipeline.

Finally, a distributed data store will be used ¢éef track of all the object produced data,
obviously with user configurable data aging projesrthat will allow discarding undesired data.
For that purpose, CouchBase has been chosen datthstore because it provides the benefits
of NoSQL data stores (highly distributed, high-#adaility properties, scalable), it is document
oriented (which fits well for many different datausces and formats as it is the case of
COMPOSE use cases)

"HSS % & !y)

Figure 14: Data Management Flow

Queries on the data associated to Service Objeltiseravailable using a query DSL. The
mechanism to send queries to the platform willitegrated in the interface used to access
Composite Service Objects. The search infrastradturesolve queries will be provided by an
underlying component that performs high-performandexing and search operations. In
particular, ElasticSearch will be leveraged as tne of the most powerful and extended search
engines that can be integrated with scalable datk-bnds (in particular CouchBase), and
which is considered for the implementation of tegistry and repository prototype.

4.2.3 Discovery Service

Service discovery forms the basis not only for sgimally retrieving corresponding Services
and Service Objects but also for composition acdmenendation services as depicted in
Figure 15. The discovery component will serve atitees that have semantic information
attached to them, more specifically Service ObjeBtsvices, and applications.

At the basis of the service discovery componeatdemantically enhanced data store in the
form of an RDF store. This component will be madghly scalable and with high performance
(with special emphasis on read / query performatwe)eet the demands of the expected usage
pattern.

The actual data store will be accessed by a stdrjzaiche Jena interface that will handle all
interactions with the discovery component. Expecfigeries are graph kind of queries over
RDF triples, thus SPARQL was chosen as the quéeyfate. The SPARQL end-point will be
exposed to the higher levels of the discovery camepovia its RESTful API. The actual
consumers of the discovery service will use a hidgnger RESTful API that will make it easier
for developers to interact with the semanticallipaamced raw data within the registry in order to

"HSS % & 'y) 1 *

locate existing entities of interested based onesofits characteristics or to find suitable
candidates for composition.

Figure 15: Service Discovery stack

Naturally, the RDF store needs not only to respongleries but also needs to be populated and
updated with new and changed information concer@@®§1POSE entities. Thus, an update
interface, providing CRUD semantics will be provddes well.

The services recommendation and composition wilbkhind a generic service management
interface which will be made available to the exédidevelopers' world via the platform's
developers' portal.

4.2.4 10T PaaS: the platform Run-Time

The run-time infrastructure is supposed to provigebasic mechanisms in order to deploy,
host, and manage the COMPOSE platform internal omepts, as well as the service objects,
services, and applications provided by the COMP@8Eelopers.

The COMPOSE architecture has many parallels witreati Cloud Platform as a Service
(PaaS) frameworks. In general, the requirementa ficloud PaaS are:

Reduce the complexity of writing and deploying evegplication;

Support the hosting of applications written in plapuveb programming languages (e.g.
Java, Ruby, JavaScript);

Provision platform services (e.g. DBMS, NoSQL, Megnrg), and allow easy
integration of applications with them; as well #ew& platform services to be extended
(i.e. add a custom data-store, messaging solution);

Be laaS (Infrastructure as a Service, e.g. OpekSE2) neutral, that is support
hosting by multiple cloud laaS vendors to prevenkdin;

Support automated multi-node setup to manage ptinsuenvironments.

Some examples for PaaS frameworks are Cloud FouHenpku, OpenShift, and Amazon Web
Services.

In a sense, COMPOSE strives to develop an loT-taieRaasS, rather then a regular web
oriented PaaS. However, rather than building sacimfaastructure from scratch, the additional
loT-centred features and capabilities can be adddadp of a web PaaS framework. The
platform chosen to serve as foundation for thik tsshe Cloud Foundry (CF) PaaS
infrastructure [2]. The reason we chose Cloud Boyis mainly due to the fact that it is open,

"HSS % & 'y) +7 *

has a favourable license (Apache 2.0), widesprdagteon, and adequate technical
characteristics.

The Cloud Foundry architecture, shown in Figureid@onceptually simple. Every external
entity that communicates with the platform or thétees hosted in it needs to go through a
layer of routers. This router is in charge of maiiming the mapping between the web address
provided to external users and the real physiaation in which the desired application resides.
A web user will be directed to a silo of web apalions, whereas a web developer that
publishes or manages an application will talk ®d¢loud controller. Web applications may be
bound to platform services, like a database, a agisg service, etc. Thus every compaosite
application deployed in CF can be divided into seonponents: an "application” and a set of
"services" (since this terminology is overloaded annfusing, we'll call these CF-apps and CF-
services, respectively). CF-apps are typically applications, deployed on top of a container
like Java Web (Tomcat), NodeJS server, etc. The Wvghich the apps run are stateless, and
are managed by CF itself. Thus, and app that neestsve data uses a data storage service like
a DB, NoSQL store, etc. CF-services are eitherdabsh statefull VMs, or physical hardware,
and can be managed by CF itself or by a third p&fycomes with a small set of built-in
services (e.g. MySQL, MongoDB), but it is rathesyeto extend the set of services and add
customized services.

Figure 16: Cloud Foundry architectural overview

"HSS % & !y)+ *

We decompose every internal components of COMP@&Epiarts which can be hosted as CF-
apps, and parts which can be hosted as CF-serfinesxample of a few selected internal
components is show in Figure 17. For example, ¢ineice discovery component is divided into
a SPARQL RDF store hosted as a CF-service, anscavbry engine hosted as a CF-app.

Figure 17: COMPOSE on Cloud Foundry

User applications are hosted as normal web CF-&p@snples are the use-case motivated
applications — smart-territory, smart-city, and srspaces. By using CF we gain all the built-in
machinery that is devoted to deploying, managing, lzosting applications. We also gain the
ability of applications to use general CF-servitikg, DBMS (e.g. MySQL) and NoSQL
storage (e.g. MongoDB, Redis).

COMPOSE also aims to provide a set of developds tpeared specifically to the 10T realm.
This set of tools replaces the CF-vendor-speciietbpment tools (developer tools are
proprietary in CF, at the time of writing). The @éyper toolset communicates with a
"COMPOSE-controller", which mimics the role of t6& "Cloud-controller” (CF-CC). It
delegates many of the actions directly to the CFfo€example pushing, or deploying, a web
app into the cloud); but modifies its behaviour wheT specific actions are needed (for
example registering a smart-object does not gaitiirahe CF-CC).

An integral part of the COMPOSE provided run-tiraéhie service deployment component.
This service, will be integrated within the platfocloud and will interact on the one hand

"HSS % & !y)+ *

internally with the cloud controller in order topley, monitor, and manage COMPOSE
services, and on the other hand will interact tlign developers' portal in order to provide the
automatic service deployment capabilities in ary éagonsume manner for the developer.

It is the intended purpose of this component tercept commands flowing into the cloud
controller and provide COMPOSE specific capabiiiie parallel to interacting with the cloud
controller. Thus, upon the introduction of a newNIRIDSE service from the developers' portal
the COMPOSE controller will pass the new serviceulgh a validation phase, and upon
successful validation, it shall interact with ther8ce Registry to incorporate the corresponding
service description, and will interact with thewdiocontroller to perform the actual deployment
in the cloud and bindings to the needed cloud plexvimiddleware services.

4.2.5 Scalable Communication infrastructure

The communication infrastructure is meant to prexgdoup communication and membership
services to the entire cluster including all itemal components. That infrastructure will be
used internally by components to support their op@arations, as well as be available as a
service to external users to connect and get patifins upon the occurrences of conditions of
interest. Such a functionality will be provided @gublish / subscribe mechanism to which
external users may be able to join via the usetbiracommunication client. This service will
be used both for the platform administration itskelf example to have an up-to date view as to
the entities which are alive and connected to th#grm at a certain moment in time. Services
running within the platform can make use of theswises to communicate between themselves
using various paradigms, such a pub / sub. The sachaology will serve as a backbone for
the platform monitoring capabilities.

To realize the capabilities mentioned above a btaléully distributed, messaging, membership
and monitoring infrastructure will be devised. Thtalable and distributed infrastructure will
utilize peer-to-peer and overlay networking tecbg@s to perform its operations at the scale
envisioned with the required performance.

Figure 18: Communication Infrastructure

The main services implemented and offered by thisponent shall be membership, and
scalable group communication. In the future effitimonitoring may be added, and a DHT
component may be made available to interested.liBkese set of services will enable (i) the
operation and orchestration of resiliency awardiegion, providing fault tolerance (ii)
Monitoring, load balancing, resource managemert,edficient components scheduling (iii)
Support distributed resource location and discavang (iv) Application integration and
cooperation.

The proposed solution is a fully distributed, setjanizing, overlay network that does not rely
on IP multicast. There are two types of entitiedganed, namely servers and thin clients (as

"HSS % & !y)+ *

can be seen in Figure 18). The servers will forgnaaup of their own in which each member is
connected only to a limited amount of its peerse $érvers group has full membership
knowledge, providing an eventually consistent sainaSeveral internal independent
topologies may be supported, namely ring (for rotess), random (for information
propagation), and structured (for key-based roitirmgether supporting efficient and robust
communication channels of the kinds mentioned albatleversatile reliability modes possible.

Internal COMPOSE entities running within the COMRE8atform, such as the Service
Objects web server or COMPOSE services, will cohtethe communication infrastructure

via a thin client interacting with a local servestance using an openly available API. The thin
client will send heartbeats to the designated sexweh that information about members joining
or leaving the group can be established. In additizere will be an API offered to enable these
clients to participate in the group communicatiad aonitoring activities as full fledged
participants, able to obtain and broadcast infoionafl his design aims to balance the desire on
the one hand to have different entities participrattse communication bus, while keeping in
mind that some of the participating entities aralsand thus cannot be required to embed
within them a full fledged communication serverughthe thin client will enable them to
participate in the infrastructure while not forcithgem to carry a server baggage upon their thin
backs. In this manner monitoring of all the differ&inds of components in the platform can be
achieved and the servers' group will have a coraplieiw of the state of the system and all its
components. In addition, it shall allow differemds of entities to communicate and share
information, such as between a running serviceaanihternal orchestration module.

This scheme scales up to a couple of thousandieiservers tier, whereas each server can
support numerous smaller scale devices, thus negwthe initial piloted scale. As a possible
future refinement of this scheme we shall contetepdafull fledged hierarchical structure at the
servers tier as well, in which individual groupdlWwe federated by a management group, thus
reaching a scale of up-to a million in the sertansitself. The hierarchical design relies on the
same notion of a group mentioned above; with maieh groups operating independently and
having a representative of them connect to a managegroup that federates all the individual
base groups.

In such a scheme as
depicted in Figure 19, each
group maintains full
knowledge of their own
members, while specially
designated delegate node
in each base group
communicate with their
respective supervisor node
in the management zone to
keep it up-to date with the
state of the base group in
guestion. The supervisor
node in turn keeps a
complete view of the zones under its supervisiom shares with the rest of the management
group members only a concise representation dbalse group status, for scalability reasons.
Nevertheless, the full information of any specifimghe can be retrieved by invoking a
management zone specific protocol.

This kind of interaction between the base groupgkthea management group enables not only
keeping an updated global status information adiwssluster but also enables group
membership communications between nodes acros$uster. In such a scheme, the supervisor

Figure 19: Communication hierarchical design

"HSS % & |) ++ *

node will serve as a representative of all the lgagep nodes interests. For example to enable
pub / sub across the entire cluster, wheneveradpasip node registers as a subscriber to a
topic, its corresponding supervisor will registeraasubscriber as well and will make sure to
pass back to the base group every message tlegeises on the topic in question, where the
delegate (acting as a publisher) will ensure thatmessage is delivered within the base zone to
all interested parties.

Membership

Membership service supported will be an eventuadlysistent interest aware membership
enabling the identification of members joining eaving the system as well as providing
support for group communication services such &ighu/ subscribe via the distribution of the
interests of each node.

A node joining the system will obtain as a confajion parameter a list of nodes that belong to
the group. A joining node requires at least onthefnodes in that list to be alive in order to join
the group. Once a connection has been establishddnodes exchange information and based
upon that the joining node starts establishing ectians to additional nodes in the group.

Every node in the group maintains open connectiomsly a small amount of its peers and
guards them via a configurable heartbeats mecha@site a node ceases to transmit heartbeats
for a configurable amount of time it is declare@d®y its peer.

Information concerning nodes that have joined, ficrashed is transmitted periodically by
each member to its connected peers, and thusftreniation is spread via a gossip mechanism
throughout the cluster.

Such a capability is important for the platform awiistration to get a view of which entities are
alive, and which others have disappeared. Thigsnmidtion may have implications for example
on an orchestration engine, a recommendation aodn@osition engine.

Group communication

Efficient publish / subscribe messages disseminatam
be based on key-based routing. Once a structured
topology has been established, such as the onenpeels
in Chord [8] and depicted in Figure 19, efficieatiting
can be performed based on the structured topology.

A broadcast mechanism is devised that splits thge@n
half and transmits the message to eth first nodadtn
such half. Each receiving node in turn follows shene
pattern, thus achieving an efficient transmissibthe
message to all nodes in the group without repastié
broadcast service may be used by every entitynibeds a

piece of information to quickly flow to all peertéies in
the group. This service can be used as a basis for Figure 20: Structured
platform wide monitoring service. topology

Similarly efficient pub / sub routing can be esistid

using information gathered by the interest awarenbership service. When a topic has a large
audience (as a percentage of the total nodes igrthi) the message shall be broadcasted to all
nodes and filtered by nodes which did not subsdolibis topic. When a message is published
on a topic with a small audience it shall be semtpto-point to the subscribers over the

overlay. There are several additional optimizatitinghe algorithm, such as broadcasting in a
specific range with a dense subscribers' populatiosending a message point-to-point in

"HSS % & 'y) +5 *

sparsely populated regions. The first implementaititroduced within COMPOSE will use a
best effort and an ack-based reliability modest-Bésrt refers to no strict reliability as
messages that may be lost along the way betweesutiissher and a subscriber will not reach
the subscriber. On the other hand, in ack-basébikly mode a subscriber explicitly sends an
acknowledgment message upon the reception of antizdaage. If such a message isn't received
by the publisher after a pre-defined amount of tiheemessage will be re-sent to that
subscriber. Such a service can be used to cooediretiveen different entities interested in the
same information distribution, without knowing efitities apriori or have direct connections
between them.

Support can be provided as well for a Write / Subscsemantics (a bulleting board) if needed.
Such a semantic ensures that the last item publishe certain topic is received by interested
subscribers. Such a service may serve as a buibdiiyg for a workflow / orchestration engine,
in which a process that finished its duties infothesworld about this via a specific bulletin
board topic while posting the corresponding reséltprocess that needs to kick-start its
operation grabs the information from the bulletbmard and can start its respective flow.

Monitoring

Monitoring functions can be supported by attribngelication based information spreading.
Such a service is designed for slowly changing thetis not very large. The attribute
replication service enables a node to set attrsbup®n itself and have the information
replicated throughout the system using the integnakip mechanism. Each node holds the
complete attributes map of all other nodes in thster as a read-only map and can only write
to its own map.

If more efficient scheme is heeded we shall contatafhe introduction of a Convergecast [7]
infrastructure that will enable the easy collectidighly distributed data via a dynamic
reverse broadcast tree, with possible aggregatioctibn at the intermediate nodes. Such a
service can efficiently aggregate a response fr@anynto one, on a topic scope. The process
consists of a forward flowing broadcast in whictlymamic aggregation function can be seeded
in the intermediate nodes, to be used in the bawaftow that performs a reverse broadcast
along the original path, performing the aggregatiorction before continuing the flow in the
backwards direction. Our design will call for thesgibility to form a dynamic topology,

building an on demand tree that can start from eacte in the cluster rather than a fixed tree
that needs to be maintained in the face of memlgecslanges. We may contemplate also
making the possible scope of such operations dymaasged on a topic subscription rather than
forcing it to be a broadcast over the entire graipus we may end up with multiple aggregators
and multiple operations front-ends at multiple tomas simultaneously.

4.3 Developer facing

4.3.1 SDK

In the context of the developer portal the SDKasacomplete chain of tools, as described by
other examples with this term, but actually a weagpr an API, natively implemented in a
variety of programming languages. This can eitleeathieved by providing classes in language
code and libraries or by extending the languagth @i g. with Ruby Gems, Node.js packages

or PHP extensions. The code for these SDKs shautzpben and for several reasons publicly
developed on a modern social coding platform, djiteub. These reasons are for one, that many
developers are already active on these platforresting yet another incentive to participate in
the COMPOSE platform, and on the other hand, thi€sSéan be developed much faster with

"HSS % & !y)+ *

the community contribution. In the first step thekSwill support Web technologies with
HTLM, JavaScript and CSS supporting a wide rangé&/eb applications and hybrid application
development approaches.

The API will exploit the simplicity and power ofdtwell-known REST implementation, the
HTTP protocol. This makes sure, that not only aami@j of developers are familiar with the
protocol, but also that almost all programming laexges and a wide variety of tested tools is
already able to operate on it. To achieve a RESARI| the management operations of
creating, reading updating and deleting, usualfigrred to as CRUD operations, will be mapped
to the respective HTTP methods.

The payload of the HTTP requests and responsesaviflist of either JSON or of XML data.
While both formats can be easily transformed ih@dther, with a certain degree of
information loss, either format has its own advgata The JSON format is much more
lightweight, whereas the XML format can provide didtial meta information of the data, such
as data types, which can ease the processingticedifatyped programming languages. Most of
the major programming languages today provideflibsaor either of these formats.

Also, using the HTTP protocol, an encryption laigealready available through SSL/HTTPS.
Exposing the API directly has the advantage, thiadi{party tools can be created, like device-
or platform-specific middleware that access the,Abwing e. g. easy registration of a
device's sensors and actuators as Smart Objects.

To ensure all necessary functionality, the SDK ARposes operations that translate directly to
the underlying COMPOSE Controller interfaces, whmossible.

User Management:The User Management Interface of the API consiktdl lifecycle
operations for a certain user, such as creatirgating, and deleting him as well as monitoring
his state and access and usage statistics. Fudherthe User Management Interface is
responsible for authenticating a user upon recaresiproviding temporary credentials, such as
session tokens, to authenticate the user in subsegeguests, and identifying the user to the
underlying COMPOSE Controller.

Service Deployment:The Service Deployment Interface will accept theassary data to
describe a Service, containing a workflow docuntleat is suitable to be used by the service
composition engine. It has to be able to read atetpret the document, to perform basic
logical validation on the actual workflow withinh& dependencies of the service must be
viable, as well as the access rights of the usetiseise services. The Service Deployment
Interface will notify the user on failed validatiovialid Service descriptions will be deployed to
a suitable VM glossary on the COMPOSE platform tredcorresponding Service Object will
be registered to the suitable COMPOSE registries.

Service Lifecycle:The Service Lifecycle Interface provides the wsigh a list of services and
Service Objects he owns. This list will be filtel@bnd sortable, by various criteria. The user
will be able to monitor and manage his serviceltesicreate and manage access policies and
access usage statistics of his services.

Service View:The Service View Interface will allow fetching et®f Services and their meta
information, that match set of given criteria anddturn a sortable list of these Services. The
List must only contain Services the given usetl®ased to access.

"HSS % & !y)+ *

4.3.2 IDE

The IDE is a graphical editor for creating compasiérvices. It supports a full set of features
for discovery, recommendation and orchestratioimtefesting Services and Service Objects.
With drag and drop Service Objects and Servicedeaorchestrated to a new composite
service. The IDE supports powerful assistance featfor validation of input / output
compatibility of code, data types, units basedluosen language and metadata. Additionally,
selected Service Objects and services can be cormepted with additional logic and metadata.
The new composite Service will be validated by akilow engine based on a processing
language. This includes a validation of input /patitparameters and metadata. Finally, the
composite service will be deployed on the COMPO@&ttime including an accessible REST
interface for developers.

The discovery mechanism will be part of the sergiemposition engine. It will fetch Services
and Service Objects from the COMPOSE registrytmiaCOMPOSE Controller, that match a
given set of criteria. The discovered Services S@xlice Object can be directly dragged to the
service composition canvas.

#

The recommendation system is based on the discovechanism. It automatically discovers
Services and Service Objects that might be of der interest to the developer, by discovering
them according to the usage frequency by that dpeeland by matching similar Services and
Service Objects to those the developer is usitbercurrent context. Recommendation might
be enhanced by profiling the developer and enrgktie recommendation by comparing his
habits to those of developers with similar profil8srvice usage statistics on development level
for each developer will be stored in the develqumtal attached data storage engine.

4.3.3 GUI

The GUI of the developer portal provides basicyeptints for providers and developers
including guidelines for development as well asasiis for registration, management and
monitoring of Smart Objects. On top on that the S&K the underlying API is enriched with
specifications, code examples and tutorials.

The documentation section will contain a completeos$ instructions to use the API, the SDKs
and the GUI, the service composition engine inipalgr. The SDK documentation will be
created automatically, by leveraging the poweofd like JavaDoc, PHPdocumentor, etc.
where possible. If need be, e. g. for reasonsegfuient updating, this section will only point to
the documentation of the API, that might be hostedervice like readthedocs.com, etc.

There will also be a detailed manual on how the GUlised. It will contain a short guide on
how to manage account information. Moreover, it edgintain detailed and illustrated
descriptions on how to access the providers secfitimee GUI and which options it offers and
how to use them. Accordingly the management seéiodevelopers will be described. A vital
part of the documentation will be the manual fa& slervice composition engine. Although a
description according to the above would be sudfitisome kind of interactive tutorial might
further lower the barrier for non-specialists amavdyet more developers.

"HSS % & !y)+ *

Furthermore, the documentation may contain cookboaé a collection of solutions to common
scenarios and a guideline to best usage pracGmegribution to that section will be limited to
chosen authors.

Bulletin Boards and general question boards artebstited outside of the COMPOSE
platform. Q&A glossary sites like stackoverfloweddy have a big mass of developers,
answering each other’s questions. Frequently retgriopics might by gathered into a FAQ
section, as part of the documentation area.

The Providers section of the developer portal maiohsist of a list of Service Objects, and
their Smart Objects where applicable, owned byatitbenticated user. Brief information about
the status will be shown in the list.

Here, a provider can register devices' Smart Ohjéatmake them available within the
COMPOSE platform. The section allows entering dietiadlescription of each Service Object.

In the detailed view, access and usage statidtiogside a detailed description and the
dependencies of the service are shown. Furtherrti&ervice Object's status can be changed
and the Service Object may be permanently remdvieé-grained access policies for each
Service Object can be set.

The developers section extends the providers sebti@llowing access to the developer's
statistics, which are stored in the COMPOSE de\ezlpprtal itself. This section will offer an
assistant to propagate a web application, thabssel outside of the COMPOSE platform, but
takes advantage of the COMPOSE services, throughoutltitude of marketplaces, by
providing meta information tailored to each spec#pplication marketplace.

The authentication, authorization and accounting giathe GUI, that will expose account self-
management functionality, will be found in this tec.

5 External interfaces and technologies to access
COMPOSE

5.1 Web Objects

One of the purposes of the COMPOSE platform istegrate real world objects as
computational entities (Service Objects) that pievinformation about their status (via sensors)
and even could initiate changes in their environnfea actuators). Web Objects are powerful
enough to be able to talk directly to the COMPO&Hf@rm interface.

Web Objects can have different nature and diffeoaigterlying implementations depending on
their nature. In order to be part of COMPOSE, Wélpe®ts will communicate with the
platform in a standardized way by exposing a wedeaPI. Smart Objects will implement
web communication protocols (HTTP and Websocketgyder to be linked with their
counterparts in the COMPOSE platform.

Moreover, the interfaces provided by both the WéleCts and the Service Objects will be
compatible, if not equal, in terms of functionality order to map the experience of accessing
the Web Objects as close as possible to the omssiog the Service Objects in the COMPOSE
platform, but with the added benefits of integratprovided by COMPOSE.

"HSS % & 'y)+ *

Based on this standard interface, different tope®gre also supported (proxy-based), in order
to support not only Smart Objects, but also ang typphysical object with capacity to provide
information.

Figure 21: Service Objects Interfaces

5.2 Developers

The COMPOSE platform provides a set of tools tlaat lve used by stakeholders to exchange
data between applications and the platform. SDK@moichmand Line Interface (CLI) are tools
used by developers to build, maintain and deployVlPOSE services and applications. Web
components, such as IDE, developer portal and rtidae are tools used by providers, to
maintain service objects, by developers, to compeseservices and to read documentation,
and by end-users to find COMPOSE applicationsnmagketplace. These provided tools as well
as developer applications utilize COMPOSE API tmoainicate with the COMPOSE

platform.

"HSS % & 'y) 57 *

Marketplace

COMPOSE Controller J

Figure 22: API high level architecture overview

The COMPOSE API is a layer that simplifies and dtadises communication between
COMPOSE platform components and the outside wérldgill exploit the simplicity and power
of the well-known REST implementation, the HTTPtpiml. This makes sure, that not only a
majority of developers is familiar with the protdcbut also that almost any programming
language and a wide variety of mature and testald tove already able to operate on it. From
the external point of view, that of the stakehaddéne following components that belong to the
API can be identified: Service Management, Serlkiéecycle and Service Objects. The API
component is built from following internal layeSecurity, Traffic and Cache.

To achieve a RESTful API the management operatbiseating, reading updating and
deleting, usually referred to as Create, Read, té¢palad Delete (CRUD) operations, will be
mapped to the appropriate HTTP methods. The payb#te HTTP requests and responses
will consist either of JISON or of XML data. Whileth formats can be easily transformed into
each other, with a certain degree of informati®s)@ither format has its own advantages. The
JSON format is much more lightweight, whereas tid Xormat can provide additional meta
information of the data, such as data types, wbathease the processing in statically typed
programming languages. Most of the major programgrfanguages today provide libraries for
either of these formats. Also, using the HTTP protpan encryption layer is already available
through SSL/HTTPS. Exposing the COMPOSE API diseltls the advantage, that third-party
tools can be created, like device- or platform-gpemiddleware, that access the API, allowing
€. g. easy registration of a device's sensors etudtars as smart objects. To ensure all
necessary functionality, the COMPOSE API exposesaifons that translate directly to the
underlying COMPOSE platform controller interfacetiere possible.

6 Mapping the use-cases to the architecture

This section discusses how the use cases for eacPPilot utilize the COMPOSE core
platform in order to deliver the envisioned funotdity. The Pilots (Smart Space, Smart City,
and Smart Territory) consist of several use casatsdemonstrate the composition of services
and communication between Web Objects using COMPE&B& components. The mapping of
the use cases to the COMPOSE architecture refers to

"HSS % & 'y)5 *

Identification of the COMPOSE core components (GtsjeWeb/Smart Objects,
Service Objects, Services, Applications) that adun each use case.

Communication and data exchange (i.e. main flowsyben the core components.

The use case mapping will assist in identifying Hbe/proposed architecture will be utilized
for both the developed Pilots but also for futueselopments based on the COMPOSE
platform.

6.1 Smart Space

The Smart Space use-case focuses on loT-basedesefor indoor environments such as, e.g.,
retailer stores, office or home environments. Tdlewance of this scenario is rooted in the fact
that, according to Strategy Analytics, people spgB@®0% of their time in indoor
environments.

In the Smart Space use-case, we will focus on at3Redailing application scenario, in which

The analysis of the user shopping experience ex#ged in order to improve the retail
operations

Customers' daily interactions with products arenaeigted by offering additional
information and services around unique individualduict identities and indoor
location-based support for personalization. Indbesidered use-case, products and
users within a given retailer shop will be locatize real-time and used as the basis for

0 Understanding the mobility of customers within tailer shop
0 Provide personalized services such as, e.g., parsbopping list, to end-users
0 Provide location-based support to retailer servitesh as, e.g., indoor navigation.

Due to the characteristics of the use-case (highbeu of objects, high number of users,
different potential applications) the COMPOSE matf will demonstrate its potential not only
at the development time but also at the runtimeyageng in real-time the information
generated in/by the use case components.

Objects: this use case will include two types gkots, shopping carts and products.
Shopping carts can be used by customers when dbipgping in the retailer store.
Each shopping cart will be equipped with an acli®& that will be used for localizing
it in real-time on a bi-dimensional space. Prodeeis be explored by interacting with
them through some form of proximity interactionshsas, e.g., QR codes or NFC.

Web Objects: smartphones of users will work as \@bfects, providing information
about the sensors present in the mobile.

Service Objects: apart from the corresponding $er@@bjects of the Shopping Cart,
Smartphone and products, additional Service Obfecthe content of the Shopping
Cart and User information will be created to connle sensed information to the rest
of the COMPOSE platform.

Services: this use case will create several sexha exploit the information pushed in
the COMPOSE platform by the Service Objects. Soenéices will analyse and

provide location related information, for examphes routes followed by the customers
in the store, as well as notification services lilt-shop presence. Moreover, store
based services involving products, like a shopfistignanager or social network
services will also be included.

#S % & 'y)5 *

Applications: COMPOSE applications developed fos tise case will have two
perspectives, the customers and the store man&gerse customers a retailer mobile
application will be developed. Through the mobpglécation, users will access
personalized services for augmenting their shoppkpgrience. For store managers, the
application will provide analytics about indoor nila profiles and user interactions
with products.

6.2 Smart City

The Smart City pilot consists of two use cases (UC)

UC1: multimodal route planner for commuters anccile Vehicle (EV) drivers.
UC2: Plan daily running.

From the proposed architecture, the following COMNBECzomponents have been identified for
utilization by the use cases:

Web Objects: The abertis platform provides curstatus about air pollution sensors,
environmental sensors, sprinkler sensors, car garkors, electrical vehicle car park
places and cameras information. It has the akditgommunicate over HTTP with the
COMPOSE core and also establish bi-directional camipation links (used for acting
on actuators, for example, users will be able tibckwoff a sprinkler when it is near
their planned daily running). In addition, real-éreocial media feeds Catalonia transit
incidents, Barcelona transit status and Barcelahdigptransport will be exposed to the
platform as Web Objects.

Each UC has different Web Object involved.

0 Web Object for UC1 are the list of places for regitey electrical vehicles and car
park sensors.

0 Web Objects for UC2 are the environment sensoijtfmm sensors, sprinkler
sensors and list of security incidents.

Service Objects: Service Objects will be develojgeserve as endpoints for connecting
Web Objects to the COMPOSE core platform. SOshwilheeded for interacting with
Web Objects (i.e. sprinkler sensors), for exposiigrmation related to the status of
elements (i.e., list of electrical vehicle car ppt&ces) and for subscribing to
notifications (i.e., car park sensors updates).

Services: High level services will be needed fonitaying car park sensors and
notifying users that there are free spaces to thericar in their route. Also a composite
service is needed for using the multimodal routepér.

Applications: The interaction between the corefptat and the stakeholders (users)
will be performed through COMPOSE applications.

The following figures illustrates the mapping oé thises cases components with the COMPOSE
core components.

"HSS % & 'y)5 *

Figure 23: Smart City Pilot

6.3 Smart Territory

The Smart Territory consists of three use cased, li€ation recommendation and automated
contextual information delivery for sports, UC2ntextual crowd-sourcing for sports and UC3:
user activity tracking and gaming.

From the proposed architecture, the following COMBECzomponents have been identified for
utilization by the use cases:

Smart Objects: All use cases involve the usagenairphones. User smartphones will
provide user data such as location and activitglfevi he Smart Objects will have the
essential resources (network, computational armdg) to communicate with the core
platform (through Service Objects and other int8, as well as to store application
data and perform data processing (e.g., calculatiarser activity levels, calculation of
user proximity, etc.). The meteorological sensbhas will be used in the context of the
Pilot are also considered Smart Objects. An OpemBaitvice will be utilised
(Meteotrentino) that provides a RESTful API forreting weather information and
snow data for specific locations in the Trentineaar

Objects: Additional to Smart Objects for the Sniagtritory can be QR codes or NFC
tags used for identification/verification of thecation of users in indoor or outdoor
places (e.g., for verifying that user have completesport route or reached a specific
point of interest, etc.).

Web Objects: The smartphones in this case arecalssidered Web Objects since they
have the abilities to communicate over HTTP with @OMPOSE core and also
establish bi-directional communication links (usedreceiving notifications, etc.). In
addition, meteorological sensors will be exposethéoplatform as Web Objects. The
sensors provide information about current weatlegther forecast and snow status in
the region of Trentino, and specially for pointsspbrt interest (ski slopes, etc.). The
sensors already provide the available informatioreal-time through HTTP interfaces.
To expose the latter information in a more strusdiuvay for the needs of the use cases
(e.g., sensor readings per user location), ap@atEp8ervice Objects will be developed.

"HSS % & 'y) 5+ *

Service Objects: Service Objects will be develojgeserve as endpoints for connecting
all Objects to the COMPOSE core platform. SOs héllneeded for interacting with
tagged objects (i.e. objects with NFC/QR tags) pisshing user-related sensor data to
the platform (e.g., location and activity levelgy, subscribing to notifications (e.g.,
weather updates) and for exposing the informatiomfthe meteorological sensors. All
communication and data exchange between Web Obf&tiart Objects and Objects,
and Applications will be performed using Servicgeats.

Services: High level services will be needed fonitaring weather updates on specific
locations and notifying users that are locatedase proximity, for providing location
recommendations based on weather/slope detailasergreferences, as well as for
identifying and notifying about the location of usdriends.

Applications: The interaction between the corefptat and the stakeholders (users)

will be performed through COMPOSE applications.Sapplications are envisioned to
be mostly web-based or mobile applications. Sugtietions will provide

management and maintenance features (e.g., datéemance, web-based user
registration, etc.) but can also be potential wabell versions of the Smartphone apps
that will be distributed to the users. The sameugohone that is used as a smart object
providing data to the platform may be used as tegliresent information retrieved

from COMPOSE (location recommendation, weather tggjamportant messages,

etc.), and thus serve as the end-user applicatsn h

The COMPOSE Developer Portal can be utilized inftingre in order to develop additional
applications that will enhance the functionalitytioé Pilot.

The following figure illustrates the mapping of thge case components with the COMPOSE
core components.

Figure 24: Smart Territory Pilot

On the Web Object side, the Implementation Framkwefiers to frameworks like the
Appcelerator Titanium framework that enables dewets to port code into different mobile
operating systems (Android, i0S, etc.). On tophatt COMPOSE will provide in the form of
libraries the communication SDK so that future depers can easily integrate communication

"HSS % & 'y) 55 *

with COMPOSE back-end into their mobile applicatiomhe Sensor SDK is, in the same sense,
is a library provided by COMPOSE that will assistdlopers in reading sensor information
from a Smartphone device (e.g., accelerometertitotdata, etc.). The interface is finally the
graphical interface that the user interacts withrtiobile application

7 Summary

The architecture presented above forms the fiagtesbf an iterative approach that will
culminate in the final architecture document dudzv. This living document will be enhanced
as individual tasks get more mature, includingréfaization of the pilots, internal components,
and crystallized requirements. We started off whithrequirements document to ensure that the
architecture proposed covers the stated requirenaent used the pilots as validation scenarios.
We provide an overview of the different platfornmgmonents and highlight the interfaces and
dependencies between them.

This document details the first version of the CAGDEE architecture. One of the primary goals
of this document is to galvanize all the consortpsntners around a unified understanding of
the goals and the way to achieve them, while magurg that there's common understanding
and agreement as to the big picture as well dsetalivision of responsibilities among the WPs
and the interfaces between different componentgteiddependencies.

Figure 25: Mapping components to WPs

Thus, at this stage we can break up the large b@@MPOSE architecture and assign
components to WPs. The lower layer, interactingenabosely with real world Web Objects is
handled by WP2. This WP is in charge of the ingestif Web Objects into the system, build an

"HSS % & 'y)5 *

internal representation of these objects as Se@figects, and support other components
wishing to interact with Web Objects data and opena. WP2 takes care as well of handling
data stemming from the associated Web Objects imuptbgs sophisticated data management
schemes to support higher level services intenagtith this data, may it be in the form of a
plain or a composite Service Object.

WP3.1 has the overall responsibility over servioestion support aspects with three main
responsibilities, namely a service registry sugpgrservice discovery, and associated
capabilities built on top of that service to praviceccommendation and composition engines.

WP3.2 is in charge of service deployment and ol/éfatycle management and monitoring.
This is the WP in which dynamic and run-time aspettthe services are put into place.

WP4 provides the run-time that will host all ertitiand the associated communication
infrastructure. The run-time will consist of a ausized 10T PaaS providing a cloud
infrastructure to host and efficiently manage atitees. The communication mechanism will
enable all entities to communicate with each otisémg several communication paradigms.

WP5 has the overarching responsibility for secuthitpughout the platform. This is a cross
cutting activity that touches all other WPs as aleeta "security by design" approach to ensure
that we produce a viable platform which users tmilft.

WHP6 is in charge of external facing aspects ofthdorm, mainly a developers' portal that will
be the gateway through which external developeaternew services and inject them directly
and automatically into the platform.

Finally, WP7 will serve as a validation point oktarchitecture by constructing several real-life
use cases to be developed and run within the CONERg&form.

The resulting platform is targeted mainly towardselopers and will serve as a marketplace for
the location and re-use of Service Objects as agfOMPOSE services. In addition it may
serve as well as a marketplace for code templayeshich a successful COMPOSE based
service or application may serve as a templatsifoilar such services that need to be
developed for slightly different domains.

8 Appendix 1 —I0T-A

The Internet of Things Architecture (loT-A) is arBpean integrated project tackling the
definition of a reference Architecture model foe tinternet of Things. The project started in
October 2010 and will end in November 2013.

The main motivation behind the 10T-A project isdaaf a common understanding of what the
Internet of Things is, especially from an architeat perspective. Nowadays, the tdmternet
of Thingsencompasses a large variety of solutions relateldsign of systems, which are able
to interact with everyday objects, being these aen®RFIDs or smartphones. However, while
there has been a great progress in the availabflidevices and systems in this field, not so
much progress has been made in the definition mioon reference models with respect to
interfaces, communication protocols, etc. The tdswdn extremely fragmented area, where
many solutions exist, but each one is confinegesic technologies or specific application
areas, with limited possibilities to integrate thefrhis of course is limiting the impact of 10T in
the every-day life services and, in particulais slowing down the progress of such
technologies.

"HSS % & 'y)5 *

In order to deal with such fragmentation, the apphoof the 10T-A is to propose a Reference
Architecture (RA) [I0oTA-D13, IoTA-D14], which shodlrepresent the basis for designing any
concrete Architecture, e.g., specific implementaito be used in application scenarios. This is
combined with a Reference Model, which is respdaditr defining a common understanding
of the IoT domain. The combination of the two iethArchitectural Reference Model, and
represents the main objective and ambition of ¢ffeA project.

The modules organization of the
reference model is represented in
Figure 26. The Domain Model
introduces in a technology
independent way the key loT
concepts. As an example, it defines
the reference scenario, composed by a
User (person or Digital Artefact)
interacting with &hysical Entity

(PE), which can be almost any object
or environment. PE are mapped to
Virtual Entities (VE), which are a
synchronous representation of PE. In
this representation a device is only
provide the linkage between PE and
VE. Through services, it is possible to
interact with PE, through their VE
counterpart. Services can beRgsource-levelwhen accessing only raw resources of PE, (ii)
Virtual Entity Level when interacting through VE and accessing moneptex interactions, and
(i) Integrated Levelwhen supporting service compositions.

Figure 26: Modules organization of the
Reference Model

The Information model covers the data models reglioy the Domain model. This includes the

information flows, storage and how they are comthires an example, it defined the data

models for VE, for services and for their relatiomaddition, it specifies in detail the notion of
data, which can be of various
types in an loT system (e.qg.,
real-time, derived, etc.)

Finally theFunctional Model
(FM) defines functionalities,
related to the Domain Model
that are needed to run the
platform. The main objective
of this component is to break
down the complexity into set
of functionalities that can be
used to create loT systems.
Figure 26 presents the main
components of the FM, and it
includes 7 groups of vertical
functionalities, and 2 shared
ones (security and
management).

Figure 27: Functional Model The 10T-A Reference

Architecture provides a
domain and application independent architectuigptovided in the form of views, to be used

"HSS % & 'y)5 *

in the modelling of structural aspects of a refeesarchitecture. In particular, three views are
presented:

Functional, which organizes the overall architegtnto functionality groups,
Information, which defines the structure, store archange of data,

Deployment and Operation, which guidelines forréed implementation and
deployment of the system.

The following figure depicts the Functional Viewtbe I0T-A Reference Architecture.

Figure 28: I0T-A Logical View
In Figure 28 all functional components are descriipedetail.

Finally, the Information Model describes all thergmnents that handle information, and how
information will be modelled. This includes the aatodel of Virtual Entities and the semantic
associated to it. But also the services, whichuaesl to consume the data originating from VE,
or to actuate them.

loT-A Reference Architecture Model in COMPOSE

The IoT-A Architecture Reference Model has beerduséerence and inspiration for the design
of the COMPOSE system and architecture, both mgef functional components, as well as
best practices. We report below a high level mappinthe COMPOSE architecture to the IoT-
A ARM, according to the various views provided.

Reference Model in accordance to the 1oT-A ARM, COMPOSE cleatrilstitliguishes its
design between (i) the Domain Model, which chargots the main domain elements of the
architecture (e.g., Web Objects, Service Objeasyi€es and Applications), (i) the
Information Model, which specifies the data modgisluding semantic description, of each
constituting element and (iii) the Functional Mqadehich groups various functionalities

"HSS % & 'y) 5/ *

required by the platform including, e.g., serviegcdvery, assisted service composition,
security, etc.. Similarly to 10T-A, the referersmenario is that of a user interacting with a Web
Object Physical Entity mediated trough an application (e.g., web-basehile, etc.). Physical
Entities are accessed via their digital countegp@drvice Objects/rtual Entitie.

& 4 & & 3

2 | #) | * &

AN (&)
! to $

Similarly to 10T-A, three basic types of Web Obgeare considered in COMPOSE, Sensors,
Tags and Actuators, where each one of them caninaeyms of sensing, computation and
communication capabilities.

In particular, COMPOSE Domain model details theas entities involved in a generic 10T-
based application delivered over the COMPOSE Mat&ee. This includes modelling how a
Smart Object can be injected into the platform,digital counterpart (Service Object) and the
way the data streams being produced can be condoynstvices and eventually applications.
This architectural layering defines all the maimponents of COMPOSE platform, and their
interactions, independently by any specific implatagon or technology.

The Information model in COMPOSE defines how Welpe®ls are represented and modelled
in COMPOSE. This includes the data structureswulihtbe managed by COMPOSE, and the
information flows among components. As an exantpke Information Model specifies the
information model for Smart Objects to be regislere COMPOSE, for raw data streams
originating from Web Objects to be ingested in CADEE (e.g., attributes, attributes types,
quality parameters, etc.), for semantically enhameiuch data streams with information needed
for augmenting services and applications. Furtheembdefines the semantic annotation
required for facilitating the service discovery ardommendation.

The Functional Model in COMPOSE details the funadilities, and their grouping, that will
provided by the platform in order to ensure a prdpnctioning of the system, as well as the
related services. Examples of this includes semacemmendation (e.g., service discovery,
recommendation, etc.), security (e.g., privacyhantication, provenance, trust and reputation),
monitoring, messaging.

IoT-A Reference Architecture: COMPOSE high-level architecture if fully alignadth the
IoT-A reference architecture, as depicted fromrecfional view. In the following table we
report the mapping of COMPOSE architectural comptnmto the l1oT-A RA functional
components.

« ((* 1109
())?! @((&¢@ @
$h@ ') ')@) 3
()($

"HSS % & 'y) 7+

2 1) @ ()@
ol
% . ()(
('
) B (" @ @
O @
&
% . >) (! E
!)& @; (&) ()(@
)& @ @.!' C
|
) (# (@D ()(@
(@'! a $

When integrating the functional view of the loT-£chitecture with the most relevant non-
functional requirements, concerning the Evolutiod &nteroperability perspectives, also in this
case we see that COMPOSE architecture and desjgitements are fully aligned.

9 Bibliography

http://jena.apache.org/

http://en.wikipedia.org/wiki/Cloud_Foundry

http://www.couchbase.com/

http://storm-project.net/

http://www.elasticsearch.org

http://www.w3.org/TR/rdf-spargl-query/

Philip C. Roth, Dorian C. Arnold, and Barton P. i "MRNet: A Software-Based
Multicast/Reduction Network for Scalable Tools",Z03, Phoenix, Arizona,
November 2003.

8. Stoica, I., Morris, R., Karger, D., Kaashoek, MBalakrishnan, H.: Chord: A scalable
peer-to-peer lookup service for internet applicagidcSIGCOMM Comput. Commun.
Rev. 31(4) (2001) 149-160

$ % &

! Il# n

N o ok e

%

"HSS % & !y)

